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Supplementary Note 1: Multipole Expansion for Equivalent Currents

According to Huygens’ principle, electric field can be represented by the Green’s tensor G
E= iw,u/G(r,r/) I () dr’ — /V x G (r,r') - M (r') dr’ (1)

where G (r,1) = (T+ ¥ )g (r,1) and g (v, ') = S,
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In the far-field region (kr > 1), it is sufficient to approximate
r—r|~r—1t-1r (2)

Then electric field is
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where M = M /m and 7 is the wave impedance of free space.
If the source dimensions are small compared to a wavelength, we could use Taylor series to
expand the phasor term e~****" in (3)
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where the first-order Taylor expansion is employed. Consequently, the current integral is ap-
proximated as

/ J(r) e gy & / J (v') dr’ + (—ik) / J () (& r)ar (5)

The first term of (5) is related to the electric dipole radiation

/J (r') dr’ = —/r’ (V-3 () dr' = —iw/r’p(r')dr’ = —iwp* (6)



where p® = [1r/p(r')dr’ is the electric dipole moment. The second term of (5) correlates to the
magnetic dipole and electric quadrupole radiations.
First, we can split the integrand into a symmetric and antisymmetric parts
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Then, we find the antisymmetric part can be expressed by magnetic dipole moment

/;(r’x.])xf‘dr':—f'xm (8)

where m = % f r’ x J(r')dr’ is the magnetic dipole moment. Next, the symmetric part can be
expressed by electric quadrupole moment tensor
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where Q° = [(3r't — ¢/ T)p(r')dr’ is the electric quadrupole moment tensor. Finally, the
current integral can be rewritten as a summation of electric dipole, magnetic dipole, and electric
quadrupole terms

/J (I‘/) e_ikf“r/dr/ ~ Jed + de + Jeq (10)
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Based on the dual principle, we have a similar expression for the magnetic current integral,
i.e.
/ M (r') e ¥ dr' & Mg + Meg + Mg (11)
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Supplementary Note 2: Power Conversion Efficiency of the Nonlinear Nanoantenna

The power conversion efficiency (1) of the nonlinear nanoantenna is defined as the output
radiation power (P,) at the second-harmonic frequency over the input power at the fundamental
frequency (P;).
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where Z = 1207 is the wave impedance of free space. The effective focus area of laser is set to be
2 um x 2 um. Figure S1 shows the power conversion efficiency of the nonlinear nanoantenna.
From the figure, under a high input power (P; > 105> W) condition, pump depletion effect should
be taken into account.
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Figure 1: Power conversion efficiency of the nonlinear spherical nanoantenna. The undepleted
pump approximation (w/o coupling case) is inaccurate under a high input power condition.



