Compact Nonlinear Yagi-Uda Nanoantennas

Xiaoyan Y.Z. Xiong¹, Li Jun Jiang¹, Wei E.I. Sha¹, Yat Hei Lo¹, and Weng Cho Chew²

¹ Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

² Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, USA

Emails: ljiang@eee.hku.hk (L.J. Jiang) and wsha@eee.hku.hk (W.E.I. Sha)

Supporting Information

Supplementary Note 1: Multipole Expansion for Equivalent Currents

According to Huygens' principle, electric field can be represented by the Green's tensor $\overline{\mathbf{G}}$

$$\mathbf{E} = i\omega\mu \int \overline{\mathbf{G}}\left(\mathbf{r},\mathbf{r}'\right) \cdot \mathbf{J}\left(\mathbf{r}'\right) d\mathbf{r}' - \int \nabla \times \overline{\mathbf{G}}\left(\mathbf{r},\mathbf{r}'\right) \cdot \mathbf{M}\left(\mathbf{r}'\right) d\mathbf{r}'$$
(1)

where $\overline{\mathbf{G}}(\mathbf{r},\mathbf{r}') = (\overline{\mathbf{I}} + \frac{\nabla \nabla}{k^2})g(\mathbf{r},\mathbf{r}')$ and $g(\mathbf{r},\mathbf{r}') = \frac{\exp(ik|\mathbf{r}-\mathbf{r}'|)}{4\pi|\mathbf{r}-\mathbf{r}'|}$.

In the far-field region $(k\mathbf{r} \gg 1)$, it is sufficient to approximate

$$|\mathbf{r} - \mathbf{r}'| \approx r - \hat{\mathbf{r}} \cdot \mathbf{r}' \tag{2}$$

Then electric field is

$$\mathbf{E} = i\omega\mu \frac{e^{ikr}}{4\pi r} \left(\hat{\theta}\hat{\theta} + \hat{\phi}\hat{\phi}\right) \cdot \int \mathbf{J}\left(\mathbf{r}'\right) e^{-ik\hat{\mathbf{r}}\cdot\mathbf{r}'} d\mathbf{r}' - ik\frac{e^{ikr}}{4\pi r}\hat{\mathbf{r}} \times \int \mathbf{M}\left(\mathbf{r}'\right) e^{-ik\hat{\mathbf{r}}\cdot\mathbf{r}'} d\mathbf{r}'$$
(3)
$$= ik\eta \frac{e^{ikr}}{4\pi r} \left[\left(\hat{\theta}\hat{\theta} + \hat{\phi}\hat{\phi}\right) \cdot \int \mathbf{J}\left(\mathbf{r}'\right) e^{-ik\hat{\mathbf{r}}\cdot\mathbf{r}'} d\mathbf{r}' - \hat{\mathbf{r}} \times \int \widetilde{\mathbf{M}}\left(\mathbf{r}'\right) e^{-ik\hat{\mathbf{r}}\cdot\mathbf{r}'} d\mathbf{r}' \right], \ k\mathbf{r} \gg 1$$

where $\widetilde{\mathbf{M}} = \mathbf{M}/\eta$ and η is the wave impedance of free space.

If the source dimensions are small compared to a wavelength, we could use Taylor series to expand the phasor term $e^{-ik\hat{\mathbf{r}}\cdot\mathbf{r}'}$ in (3)

$$e^{-ik\hat{\mathbf{r}}\cdot\mathbf{r}'} = \sum_{n} \frac{(-ik)^n}{n!} (\hat{\mathbf{r}}\cdot\mathbf{r}')^n \approx 1 + (-ik)(\hat{\mathbf{r}}\cdot\mathbf{r}')$$
(4)

where the first-order Taylor expansion is employed. Consequently, the current integral is approximated as

$$\int \mathbf{J} \left(\mathbf{r}' \right) e^{-ik\hat{\mathbf{r}}\cdot\mathbf{r}'} d\mathbf{r}' \approx \int \mathbf{J} \left(\mathbf{r}' \right) d\mathbf{r}' + (-ik) \int \mathbf{J} \left(\mathbf{r}' \right) (\hat{\mathbf{r}}\cdot\mathbf{r}') d\mathbf{r}'$$
(5)

The first term of (5) is related to the electric dipole radiation

$$\int \mathbf{J}(\mathbf{r}') d\mathbf{r}' = -\int \mathbf{r}' \left(\nabla' \cdot \mathbf{J}(\mathbf{r}') \right) d\mathbf{r}' = -i\omega \int \mathbf{r}' \rho(\mathbf{r}') d\mathbf{r}' = -i\omega \mathbf{p}^e \tag{6}$$

where $\mathbf{p}^e = \int \mathbf{r}' \rho(\mathbf{r}') d\mathbf{r}'$ is the electric dipole moment. The second term of (5) correlates to the magnetic dipole and electric quadrupole radiations.

First, we can split the integrand into a symmetric and antisymmetric parts

$$(\hat{\mathbf{r}} \cdot \mathbf{r}')\mathbf{J} = \frac{1}{2} \left[(\hat{\mathbf{r}} \cdot \mathbf{r}')\mathbf{J} + (\hat{\mathbf{r}} \cdot \mathbf{J})\mathbf{r}' \right] + \frac{1}{2} (\mathbf{r}' \times \mathbf{J}) \times \hat{\mathbf{r}}$$
(7)

Then, we find the antisymmetric part can be expressed by magnetic dipole moment

$$\int \frac{1}{2} (\mathbf{r}' \times \mathbf{J}) \times \hat{\mathbf{r}} d\mathbf{r}' = -\hat{\mathbf{r}} \times \mathbf{m}$$
(8)

where $\mathbf{m} = \frac{1}{2} \int \mathbf{r}' \times \mathbf{J}(\mathbf{r}') d\mathbf{r}'$ is the magnetic dipole moment. Next, the symmetric part can be expressed by electric quadrupole moment tensor

$$\frac{1}{2} \int \left[(\hat{\mathbf{r}} \cdot \mathbf{r}') \mathbf{J} (\mathbf{r}') + (\hat{\mathbf{r}} \cdot \mathbf{J} (\mathbf{r}')) \mathbf{r}' \right] d\mathbf{r}' \qquad (9)$$

$$= \frac{1}{2} \int (\mathbf{r}' \mathbf{J} (\mathbf{r}') + \mathbf{J} (\mathbf{r}') \mathbf{r}') \cdot \hat{\mathbf{r}} d\mathbf{r}'$$

$$= \frac{-i\omega}{2} \int \rho(\mathbf{r}') \mathbf{r}' \mathbf{r}' d\mathbf{r}' \cdot \hat{\mathbf{r}} = \frac{-i\omega}{6} \overline{\mathbf{Q}}^e \cdot \hat{\mathbf{r}}$$

where $\overline{\mathbf{Q}}^e = \int (3\mathbf{r'r'} - r'^2 \overline{\mathbf{I}})\rho(\mathbf{r'})d\mathbf{r'}$ is the electric quadrupole moment tensor. Finally, the current integral can be rewritten as a summation of electric dipole, magnetic dipole, and electric quadrupole terms

$$\int \mathbf{J} \left(\mathbf{r}' \right) e^{-ik\hat{\mathbf{r}}\cdot\mathbf{r}'} d\mathbf{r}' \approx \mathbf{J}_{ed} + \mathbf{J}_{md} + \mathbf{J}_{eq}$$

$$= -i\omega \mathbf{p}^e + ik\hat{\mathbf{r}} \times \mathbf{m} - \frac{k\omega}{6} \overline{\mathbf{Q}}^e \cdot \hat{\mathbf{r}}$$
(10)

Based on the dual principle, we have a similar expression for the magnetic current integral, i.e.

$$\int \mathbf{M} \left(\mathbf{r}' \right) e^{-ik\hat{\mathbf{r}}\cdot\mathbf{r}'} d\mathbf{r}' \approx \mathbf{M}_{md} + \mathbf{M}_{ed} + \mathbf{M}_{mq}$$

$$= -i\omega \mathbf{p}^m + ik\hat{\mathbf{r}} \times \mathbf{m}^e - \frac{k\omega}{6} \overline{\mathbf{Q}}^m \cdot \hat{\mathbf{r}}$$
(11)

Supplementary Note 2: Power Conversion Efficiency of the Nonlinear Nanoantenna

The power conversion efficiency (η) of the nonlinear nanoantenna is defined as the output radiation power (P_o) at the second-harmonic frequency over the input power at the fundamental frequency (P_i) .

$$\eta = \frac{P_o}{P_i} = \frac{\int_s \operatorname{Re}\left[\mathbf{E}^s(2\omega) \times \mathbf{H}^s(2\omega)\right] \cdot d\mathbf{S}}{\int_s \frac{|\mathbf{E}^i(\omega)|^2}{Z} dS}$$
(12)

where $Z = 120\pi$ is the wave impedance of free space. The effective focus area of laser is set to be 2 um × 2 um. Figure S1 shows the power conversion efficiency of the nonlinear nanoantenna. From the figure, under a high input power ($P_i > 10^5$ W) condition, pump depletion effect should be taken into account.

Figure 1: Power conversion efficiency of the nonlinear spherical nanoantenna. The undepleted pump approximation (w/o coupling case) is inaccurate under a high input power condition.