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Supporting Information

Supplementary Note 1: Multipole Expansion for Equivalent Currents

According to Huygens’ principle, electric field can be represented by the Green’s tensor G
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where G (r, r′) = (I+ ∇∇
k2
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In the far-field region (kr ≫ 1), it is sufficient to approximate

|r− r′| ≈ r − r̂ · r′ (2)

Then electric field is
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where M̃ = M/η and η is the wave impedance of free space.
If the source dimensions are small compared to a wavelength, we could use Taylor series to

expand the phasor term e−ikr̂·r′ in (3)
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where the first-order Taylor expansion is employed. Consequently, the current integral is ap-
proximated as ∫
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The first term of (5) is related to the electric dipole radiation∫
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where pe =
∫
r′ρ(r′)dr′ is the electric dipole moment. The second term of (5) correlates to the

magnetic dipole and electric quadrupole radiations.
First, we can split the integrand into a symmetric and antisymmetric parts
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Then, we find the antisymmetric part can be expressed by magnetic dipole moment∫
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where m = 1
2

∫
r′ × J (r′) dr′ is the magnetic dipole moment. Next, the symmetric part can be

expressed by electric quadrupole moment tensor
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where Q
e
=

∫
(3r′r′ − r′2I)ρ(r′)dr′ is the electric quadrupole moment tensor. Finally, the

current integral can be rewritten as a summation of electric dipole, magnetic dipole, and electric
quadrupole terms ∫
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Based on the dual principle, we have a similar expression for the magnetic current integral,
i.e. ∫
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Supplementary Note 2: Power Conversion Efficiency of the Nonlinear Nanoantenna

The power conversion efficiency (η) of the nonlinear nanoantenna is defined as the output
radiation power (Po) at the second-harmonic frequency over the input power at the fundamental
frequency (Pi).
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where Z = 120π is the wave impedance of free space. The effective focus area of laser is set to be
2 um × 2 um. Figure S1 shows the power conversion efficiency of the nonlinear nanoantenna.
From the figure, under a high input power (Pi > 105 W) condition, pump depletion effect should
be taken into account.



Figure 1: Power conversion efficiency of the nonlinear spherical nanoantenna. The undepleted
pump approximation (w/o coupling case) is inaccurate under a high input power condition.


