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Figure S1. Schematic diagram of the setup and designed arrangement of substrate mounting 

for fabricating silver macro-periodic and micro-random structures.  
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 Experimental results

 

Figure S2. Periodicity (P) of pattern as a function of incident angle of light. The triangular 

dots are experimental results as summarized in the inset table. Theoretical calculation is 

represented by the black line. In the equation, λ is the wavelength of light source, θ is the 

incident angle, and n is the refractive index of glass substrate. 
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Figure S3. 2D periodic silver nanostructures prepared from (a) double exposures and (b) 

three beams interference. 
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Figure S4. SEM image of (a) silver nanoplate based macro-periodic and micro-random 

structure after thermal annealing and (b) the magnified image. 



 

A schematic structure with one dimensional periodicity (Λx) was shown in Figure S5 (a). 

Taking TM polarization (electric field is along x-direction) as example, the incident magnetic 

field can be written as: 

, 0 Iexp[ (sin cos )]inc yH jk n x zθ θ= − +   (1) 

The normalized fields in region I (z<0) and III (z>d) is expressed as: 

I, inc, I,exp[ ( )]y y i xi zi
i

H H r j k x k z= + − −   (2) 

III, III,exp{ [ ( )]}y i xi zi
i

H t j k x k z d= − + −   (3) 

where I, III,,zi zik k  and xik are the wave numbers and can be determined by dispersion relation 

and Floquet theorem, ri (ti) (i is integer) are normalized magnetic field amplitudes of the i-th 

reflected (transmitted) wave in region I (III) which are unknowns. In the grating region II 

(0<z<d), the periodic permittivity is expanded in the Fourier series as 

( ) exp( 2 / )rd h x
h

x jε ε π= Λ   where hε  is the h-th Fourier component of the permittivity in 

grating region. It should be note that this expansion is not valid for macro-periodic and micro-

random structures which will be dealt with in our modified RCWA method. The tangential 

magnetic (y-component) and electric fields (x-component) can be expanded in Fourier series 

in terms of space harmonics fields: 
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where Uyi(z) and Vxi(z) are the normalized amplitudes of the i-th space harmonic fields and η0 

is wave impedance in free space. Substituting expression (1-5) into Maxwell’s equations, a 

second order matrix differential equation will be obtained:  
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where 0z k z=  and 1
x x

−= −Ω K ε K I is expressed in terms of wave vectors and Fourier 

components of permittivity, Kx is a diagonal matrix of kxi and ε-1 is the matrix formed by hε , I 

is unit matrix. With calculating the eigenvalues and eigenvectors of Ω, matching the boundary 

condition at z=0 and z=d, the unknowns of ri and ti can be analytically determined. The 

reflection and transmission of grating structures are respectively determined by: 
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Figure S5. (a) A schematic of grating structures. Λx is the period in x-direction, f Λx is the 

width of grating strip, εgr and εrd are, respectively, the permittivities of groove and ridge 

region of grating, θ is incident angle of light. (b)Experimental (exp.) and simulation (sim.) 

extinction spectra of silver strip grating on glass substrate. The black curve is the 

experimental extinction spectrum of our silver nanoplate comprised macro-periodic and 

micro-random structure. Triangle red line is the perfect silver strip grating and the blue line is 

silver strip grating after including Gaussian fluctuation (σ =0.15). The periodicity, width and 

height of silver strip for simulation are 610nm, 400nm and 50 nm, respectively.  
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Figure S6. Simulated extinction spectra of perfect grating. The black square curve is 

calculated by including all order components of Floquet spectrum of silver refractive indices. 

The red dot curve is the spectra of zero-order component, and the blue triangle curve is the 

zero- and first-order component combined spectrum respectively. 

 


