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Survey on Symplectic Finite-Difference
Time-Domain Schemes for Maxwell’s Equations

Wei Sha, Zhixiang Huang, Mingsheng Chen, and Xianliang Wu

Abstract—To discretize Maxwell’s equations, a variety of
high-order symplectic finite-difference time-domain ( )
schemes, which use th-order symplectic integration time step-
ping and th-order staggered space differencing, are surveyed.
First, the order conditions for the symplectic integrators are de-
rived. Second, the comparisons of numerical stability, dispersion,
and energy-conservation are provided between the high-order
symplectic schemes and other high-order time approaches. Fi-
nally, these symplectic schemes are studied by using different
space and time strategies. According to our survey, high-order
time schemes for matching high-order space schemes are required
for optimum electromagnetic simulation. Numerical experiments
have been conducted on radiation of electric dipole and wideband
S-parameter extraction of dielectric-filled waveguide. The results
demonstrate that the high-order symplectic scheme can obtain sat-
isfying numerical solutions under high Courant–Friedrichs–Levy
number and coarse grid conditions.

Index Terms—High-order differences, Maxwell’s equations, nu-
merical stability and dispersion, symplectic integrators.

I. INTRODUCTION

AS THE MOST standard algorithm, the traditional finite-
difference time-domain (FDTD) method [1], [2], which

is explicit second-order accurate in both space and time, has
been widely applied to electromagnetic computation and simu-
lation. One of the primary drawbacks associated with the FDTD
method is the significant accumulated errors from numerical in-
stability, dispersion and anisotropy. Hence, fine grids must be
used to obtain satisfying numerical results, which leads to vast
memory requirements and high computational costs, especially
for electrically-large domains and for long-term simulation.

To overcome the shortcoming, some high-order space strate-
gies have been put forward. For example, Fang proposed the
high-order FDTD(4,4) method [3]. Yet, the method is difficult
to handle material interface for modeling the three-dimen-
sional complex objects. Another approach is the staggered
FDTD(2,4) method [4]–[6]. However, the method must set
lower Courant–Friedrichs–Levy (CFL) number to obtain
high-order numerical precision.

In order to further explore efficient methods for optimum
electromagnetic simulation, other improved time strategies are
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proposed. For example, the high-order Runge-Kutta (R-K) ap-
proach was introduced in [7]–[9]. However, the approach is dis-
sipative and needs large amount of memory. Another alternative
method is the alternating direction implicit FDTD (ADI-FDTD)
algorithm [10], [11]. Although it saves CPU time owing to un-
conditional stability, undesirable numerical precision and dis-
persion will happen once the high CFL number is adopted.

Based on the assumption that Maxwell’s equations can be
written as infinite-dimensional Hamiltonian system [12], the en-
ergy-preserving explicit symplectic integration scheme has been
introduced to the computational electromagnetics [13], [14]. Al-
though it is nondissipative and saves memory, the symplectic
FDTD (SFDTD) scheme proposed in [13] needs at least four it-
erations within every time step compared with one iteration for
the traditional FDTD method. As a result, the SFDTD scheme
with higher stability and lower dispersion does not seem to ac-
quire lower computational complexity. To solve the problem,
the optimized symplectic integrators are constructed in [15],
[16], but they are only second-order accurate in time, and equiv-
alent to the leap-frog time integration method.

The problems of interest here are how to construct optimized
high-order symplectic integrators, and how to verify the advan-
tages of them over low-order symplectic integrators and over
other high-order time strategies. On the one hand, we derive the
order conditions for constructing the optimized high-order sym-
plectic integrators, and propose an averaged stability limit cri-
terion for analyzing the computational complexity of them. On
the other hand, with different symplectic integrators and spatial
differences, the SFDTD schemes are studied and compared.

II. SYMPLECTIC FRAMEWORK FOR MAXWELL’S EQUATIONS

A function of space and time evaluated at a discrete point in
the Cartesian lattice and at a discrete stage in the time step can
be notated as

(1)

where , , and are, respectively, the lattice space incre-
ments in the , , and coordinate directions, is the time
increment, , , , , , and are integers, denotes the
th stage after time steps, is the total stage number, and

is the fixed time with respect to the th stage.
For the spatial direction, the explicit th-order accurate cen-

tered difference expressions in conjugation with the staggered
Yee lattice are used to discretize the first-order spatial deriva-
tives, shown in (2) at the bottom of the following page, where

, , and are the coefficients of spatial
differences. is defined as , and the
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TABLE I
COEFFICIENTS OF qth-ORDER ACCURATE CENTERED DIFFERENCES

values of and the computed are listed in Table I. From
the table, increases as the order of differences increases.

For the temporal direction, Maxwell’s equations in homoge-
neous, lossless, and sourceless medium can be written as [13]

(3)

(4)

(5)

where is the 3 3 null matrix, is the three-dimen-
sional curl operator, and and are the permittivity and the
permeability of the medium.

Using the product of elementary symplectic mapping, the
exact solution of (3) from to can be approxi-

mately constructed [17]

(6)
where and are the symplectic integrators. Accordingly, the

stage and th-order symplectic scheme is constructed. Gen-
erally, .

In view of and , we can
employ Taylor series to expand the right-hand side of (6) into
the matrix form

(7)

where , , and is the
3 3 unit matrix.

Similarly, the left-hand side of (6) can be written in (8), shown
at the bottom of the page, where .

(2)

(8)
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TABLE II
TIME-REVERSIBLE SYMPLECTIC INTEGRATORS: c = c (1 � l � m), d = d (1 � l � m� 1), AND d = 0

TABLE III
HALF-UNITARY SYMPLECTIC INTEGRATORS: d = c (1 � l � m)

Then we compare the coefficients of the terms of (7) and
(8), the th-order conditions can be derived as follows:

(9)

(10)

(11)

(12)

Unfortunately, the equations [(9)–(12)] are not independent
of each other, the time-reversible [17] or half-unitary [18] con-
straint must be employed such as

(13)

(14)

The th-order symplectic integrators must satisfy from
first-order conditions to th-order conditions; time-re-
versible constraint (13) or half-unitary constraint (14). Even
so, for time-reversible symplectic integrators, there is still
an unknown that cannot be solved. So we force the time-re-
versible symplectic integrators to satisfy any one of the

th-order conditions.
From (A-C), the optimized symplectic integrators listed in

Tables II and III can be obtained. Noticeably, the time-reversible
symplectic integrators in [13] only satisfy (A) and (B) but not
(C).

III. STABILITY ANALYSIS

It is well known that the stability limit for solving
Maxwell’s equations can be given as [19]

(15)

where is the temporal stability factor, and is the spatial
stability factor.

The spatial stability factor can be written as

(16)

where is the dimension number. Considering that with
low-order differences are smaller than those with high-order dif-
ferences, the second-order spatial difference can achieve max-
imum stability limit under the identical time strategy condition.
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The temporal stability factor can be computed by solving
the growth factor of the schemes [13]. The of
the symplectic integrators are also listed in Tables II and III.

For time-domain electromagnetic simulation, the required
time step is directly proportional to , every time
step needs at least iterations, and each iteration needs

operations. Hence, total computational complexity is
.

A novel averaged stability limit criterion can be defined as

(17)

where is called the averaged temporal stability factor. Dif-
ferent from the stability limit which focuses on “stable”
algorithm, the averaged stability limit focuses on “effi-
cient” algorithm. For the time-reversible symplectic integrators,

can be combined with , hence, . Whereas,
for the half-unitary symplectic integrators.

The symplectic integrators with the same accuracy (espe-
cially for second-order accuracy) in time can be selected by
the averaged temporal stability factor . Tables II and III
denote the chosen symplectic integrators with the asterisks.
Moreover, as the order of the symplectic integrators increases,
the averaged temporal stability factor decreases.

According to our survey, the maximum of is 2, which
can be obtained by the stage time-reversible symplectic
integrators with , ,

, , ,
and . In particular, if we combine with , all
the symplectic integrators are equal. It can be verified that
the time-reversible symplectic integrators only satisfy the
first-order conditions and the second-order conditions. Hence,
the leap-frog method can be implemented by the stage
time-reversible symplectic schemes with and

. In [16], the authors drew a similar conclusion, but
they did not seem to be aware that the symplectic schemes are
equivalent to the second-order leap-frog time method.

In conclusion, the SFDTD(2,2) scheme or the traditional
FDTD(2,2) method has the highest averaged stability limit

in all the schemes.

IV. COMPARISONS

A. Comparisons to Other High-Order Strategies

Using the fourth-order symplectic integrators denoted by the
asterisk in Table II and the fourth-order centered spatial differ-
ence, the SFDTD(4,4) scheme is compared with the original
SFDTD(4,4) scheme [13]. Using the same spatial difference and
explicit fourth-order R-K approach [9], the R-K(4,4) approach
is compared. In addition, the J-Fang(4,4) method [3] is also con-
sidered.

First, the stability limit of our scheme is 0.858 while
0.743 for the original scheme, 0.700 for the R-K(4,4) approach,
and 0.577 for the J-Fang(4,4) method.

Second, the relative phase velocity error as
a function of points per wavelength (PPW) for a plane wave
traveling at and is shown in Fig. 1. Here, the
CFL number is set to be 0.5.

Fig. 1. Dispersion curves for a plane wave traveling at � = 60 and � = 30

versus points per wavelength (PPW) discretization: CFL = 0:5.

Fig. 2. Dispersion curves for a plane wave traveling at � = 30 versus the
propagating angle �: CFL = 0:577 and PPW = 8.

Third, the CFL number is reset to be 0.577, the spatial reso-
lution is taken as 8 PPW, and the propagating angle .
We redraw the dispersion curves with respect to the propagating
angle in Fig. 2.

From Figs. 1 and 2, one can notice that the J-Fang (4,4)
method has the best numerical dispersion, and our scheme is
superior to the original scheme and the R-K approach.

B. Low-Order Symplectic Integrators Versus High-Order
Symplectic Integrators

Although the traditional FDTD(2,2) method holds the highest
averaged stability limit , it is not the most efficient algo-
rithm for optimum electromagnetic simulation, because of the
unsatisfactory numerical dispersion. It has been verified that the
staggered FDTD(2,4) method demonstrates its advantages over
the traditional FDTD(2,2) method [4]. The advantages attribute
to the utilization of high-order spatial difference.
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Fig. 3. Dispersion curves of the SFDTD(2,4) scheme and the SFDTD(3,4)
scheme using different CFL number: � = 45 , � = 0 .

The problem of interest is whether the high-order time
schemes have advantages over the low-order time schemes. The
dispersion comparisons between the SFDTD scheme(2,4) and
the SFDTD(3,4) scheme are given in Fig. 3. The SFDTD(2,4)
scheme uses the time-reversible symplectic integrators con-
structed in Section III, and the SFDTD(3,4) scheme uses the
half-unitary symplectic integrators denoted by the asterisk in
Table III. In particular, the same iteration number
and the same spatial differences are adopted. It can be clearly
seen that the dispersion curves of the SFDTD(2,4) scheme go
up drastically when the high CFL number is fixed. Contrarily,
the dispersion curves of the SFDTD(3,4) scheme almost keep
constant.

We change the fourth-order spatial difference to the second-
order spatial difference, then redraw the dispersion curves of
the SFDTD(2,2) scheme and the SFDTD(3,2) scheme in Fig. 4.
Compared with the Fig. 3, the SFDTD(3,2) scheme dose not
show any advantages over the SFDTD(2,2) scheme, no matter
what CFL number we adopt.

Hence, high-order differences coupled to high-order sym-
plectic integrators are effective for optimum electromagnetic
simulation.

V. NUMERICAL RESULTS

A. One-Dimensional Propagation Problem

A Gaussian pulse can be defined by
with and . The space increment is
set as , and the CFL number is chosen to be 0.5. The
time-domain waveforms are recorded in Fig. 5 after the pulse
travels 10000 cells. Compared with the traditional FDTD(2,2)
method and the staggered FDTD(2,4) method, the SFDTD(4,4)
scheme agrees with the analytical solution very well.

B. Two-Dimensional Waveguide Problem

A two-dimensional waveguide resonator with size 2.286 cm
1.016 cm is driven in mode. Calculated by the above

mentioned SFDTD(4,4) scheme and the R-K (4,4) approach, the

Fig. 4. Dispersion curves of the SFDTD(2,2) scheme and the SFDTD(3,2)
scheme using different CFL number: � = 45 , � = 0 .

Fig. 5. Time-domain waveforms of the Gaussian pulse by the traditional
FDTD(2,2) method, the staggered FDTD(2,4) method, and the SFDTD(4,4)
scheme.

normalized averaged energy per three periods is drawn in Fig. 6.
The uniform space increment , the CFL number
is chosen to be 0.797, and the time step . To obtain
high-order accuracy, we use the analytical solution to treat the
perfect electric conductor (PEC) boundary. Compared with the
SFDTD(4,4) scheme, the R-K (4,4) approach has obvious am-
plitude error. Furthermore, within given numerical precision,
the required memory of the R-K approach is four times more
than that of the symplectic scheme.

C. Three-Dimensional Radiation Problem

The example on three-dimensional oscillating electric dipole
is analyzed by kinds of symplectic schemes under the conditions
of identical spatial differences and identical iteration number

. The computational domain occupies
cells, the dipole is located at the source point (33 1/2,33,33)
near the center of the domain, and the recorded field point is
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Fig. 6. Normalized averaged energy of two-dimensional waveguide resonator
calculated by the R-K(4,4) approach and the SFDTD(4,4) scheme.

Fig. 7. Absolute error of E field component computed by the SFDTD(2,4)
scheme and the SFDTD(3,4) scheme: CFL = 0:5.

located 10 cells from the source point. To absorb the outgoing
wave, 10-layered perfectly matched layer (PML) is employed.
Furthermore, the update equation for the electric dipole can be
given by

(18)

where , , and .
As shown in Fig. 7–9, the maximum absolute errors ( er-

rors) between the numerical results and the analytical solutions
are provided for comparisons.

When the CFL number is taken as 0.5, the SFDTD(3,4)
scheme does not show any advantages over the SFDTD(2,4)

Fig. 8. Absolute error of E field component computed by the SFDTD(2,4)
scheme and the SFDTD(3,4) scheme: CFL = 1:0.

Fig. 9. Absolute error of E field component computed by the SFDTD(2,2)
scheme and the SFDTD(3,2) scheme: CFL = 1:0.

scheme. In Fig. 7, the errors for the SFDTD(3,4) scheme and
the SFDTD(2,4) scheme are, respectively, 0.0073 and 0.0049.

However, when the CFL number is taken as 1.0, the
SFDTD(3,4) scheme obtains more accurate result than
the SFDTD(2,4) scheme. In Fig. 8, the errors for the
SFDTD(3,4) scheme and the SFDTD(2,4) scheme are, respec-
tively, 0.0052 and 0.0132. Obvious increase in error can be
found by the SFDTD(2,4) scheme.

We change the fourth-order spatial difference to the second-
order spatial difference, and the CFL number still is set to be
1.0. We can see that the SFDTD(3,2) scheme almost achieves
the same numerical result as the SFDTD(2,2) scheme. In Fig. 9,
the errors for the SFDTD(3,2) scheme and the SFDTD(2,2)
scheme are, respectively, 0.127 and 0.112.

Therefore, matching the high-order symplectic integrators to
high-order spatial differences is required for optimum electro-
magnetic simulation.
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Fig. 10. S parameter of dielectric-filled waveguide calculated by the tradi-
tional FDTD(2,2) method and the SFDTD(3,4) scheme.

D. Three-Dimensional Wide-Band -Parameter Extraction

Partially filled with dielectric of permittivity 3.7, the WR-3
optical waveguide is driven in the dominant-mode [20].
The size of the waveguide is 0.8636 mm 0.4318 mm, and
the length of the dielectric is 0.504 mm. The settings are taken
as and . The ten layer PML is
used to truncate the two waveguide ports, and sinusoidal-modu-
lated Gaussian pulse is employed as excitation source. In par-
ticular, the PEC boundary is treated with the multiple image
technique [21], and the air-dielectric interface is modeled by
the scheme proposed in [22]. The wideband S-parameter is ex-
tracted after 5000 time steps. Compared with the traditional
FDTD(2,2) method (see Fig. 10), the SFDTD(3,4) scheme can
obtain satisfying numerical solution under coarse grid condi-
tion.

VI. CONCLUSION

The schemes are the explicit and non-dissi-
pative time-domain solvers for Maxwell’s equations. First, the
SFDTD schemes do not have amplitude error and save consid-
erable memory compared with the R-K approaches. Second, it
can achieve satisfying numerical stability and dispersion by se-
lecting proper and . Third, to obtain accurate numerical re-
sults, the high should be consistent with the high . In addition,
extremely high-order spatial differences are hard to treat inho-
mogeneous boundaries. Likewise, extremely high-order sym-
plectic integrators cause low averaged stability limit or low com-
putational complexity.
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