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A B S T R A C T

The temperature-drift effect of microstrip filters is analyzed by the proposed electromagnetic-thermal co-
simulation method based on parallel high-order discontinuous Galerkin time domain (DGTD) and finite-element
time-domain (FETD) algorithms with a memory reduction technique. The element matrices of DGTD method
are factorized into the product of coefficient matrices and universal matrices. The coefficient matrices are
different for each tetrahedral element and need to be stored for all the elements. While the universal matrices
are the same for all the tetrahedral elements and only need to be stored for one element. Since the sizes of the
coefficient matrices are much smaller than the element matrices of DGTD method, the proposed method avoids
storing the large element matrices and greatly reduce the memory requirement of the DGTD method. Thus
it reduces the memory requirement of the whole electromagnetic-thermal co-simulation which is dominated
by the memory consumption of the DGTD method. Large-scale parallel technique is adopted to accelerate
the process of electromagnetic-thermal co-simulation. The proposed method provides a very powerful tool for
temperature-drift effect analysis of microstrip filters.
1. Introduction

Due to its advantages of small size, light weight, easy manufacture
and low cost, the microstrip filters play a vital role in RF/microwave
applications [1]. With the rapid development of wireless communica-
tions, electromagnetic spectrum resources are increasingly occupied.
As a consequence, the guard band between two adjacent working
frequency bands becomes extremely narrow, leading to a demand
of high-performance microstrip filters. In order to make the wireless
communication system work properly, the microstrip filters should
have small passband insertion loss and fluctuation and large stopband
attenuation. Moreover, the microstrip filters should withstand high
input power and have good thermal stability.

The temperature characteristic of a microstrip filter is an important
parameter to measure its performance. On the one hand, the tem-
perature of a microstrip filter may increase greatly due to its power
dissipation induced by high input power. On the other hand, the
microstrip filter may operate under extreme environment, which can
also greatly influence the temperature of the microstrip filter. If the
microstrip filter is very sensitive to the temperature, its electromagnetic
performances like insertion loss of passband and the stopband atten-
uation will change greatly with temperature variation. Therefore, the
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temperature-drift effect analysis of microstrip filters is necessary and
significant.

Since the temperature-drift effect of a microstrip filter involves
both electromagnetic and thermal physics, electromagnetic-thermal co-
simulation needs to be carried out to analyze this effect. Numerical
methods like finite-difference time-domain (FDTD) method and finite
element method (FEM) are usually adopted to solve Maxwell equa-
tion and heat conduction equation to implement the electromagnetic-
thermal co-simulation [2–12]. For instance, the microwave heating
problem is analyzed with the FDTD method in [2–4]. The electrother-
mal characteristics of power distribution networks, through-silicon-via
(TSV) structures, and interconnects of the integrated circuits are sim-
ulated by the FEM method in [5–8]. The influence of the thermal
effect on the electromagnetic performance of high-power microwave
components is evaluated with FEM method in [9]. The temperature
increase of human body induced by the electromagnetic radiation of
cell phone is investigated with the FEM method in [10].

Recently, the discontinuous Galerkin time domain (DGTD) method
is introduced into the electromagnetic-thermal co-simulation [11,12].
The DGTD method inherits the advantages of both the FDTD method
and FEM method. It can use tetrahedron elements to accurately model
the structures with curved surfaces, adopt higher-order basis functions
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Fig. 1. The unknowns on the common face of two adjacent elements in (a) FEM
method and (b) DGTD method. Each dot represents an unknown.

Fig. 2. Principle diagram of electromagnetic-thermal co-simulation.

to improve accuracy, avoid solving large global sparse matrix equa-
tion, naturally be combined with the parallel technique, etc. However,
it must be pointed out that the DGTD method also has a serious
shortcoming, namely high memory consumption. As shown in Fig. 1,
the unknowns on the common face of two adjacent elements are the
same in FEM method, while they are different in the DGTD method,
which will make the number of unknowns on the common face double.
Actually, if one edge is shared by multiple elements, the unknowns on
the edge are different in all these elements, which greatly increases the
total number of unknowns of DGTD method. As a result, the memory
requirement of the DGTD method for the storage of matrix elements is
much larger than the FEM method. For some complex and multiscale
microstrip filter geometries, the total number of elements after spatial
discretization will be huge, which makes the traditional DGTD based
electromagnetic-thermal co-simulation unavailable for such a kind of
problem. Here a memory reduction technique is utilized to reduce the
memory cost of the high-order DGTD and FETD based electromagnetic-
thermal co-simulation. Large-scale parallel technique is introduced to
accelerate the simulation process. The proposed method provides a very
powerful tool for temperature-drift effect analysis of microstrip filters.

2. Theories and formulations

2.1. General method for electromagnetic-thermal co-simulation

Fig. 2 shows the principle diagram of electromagnetic-thermal co-
simulation. Firstly, the electromagnetic simulation is conducted with
the governing equation of time-domain Maxwell curl equations:

𝜀 𝜕𝐄
𝜕𝑡

= ∇ ×𝐇 − 𝜎𝐄 (1)

𝜇 𝜕𝐇
𝜕𝑡

= −∇ × 𝐄 (2)

with the permittivity 𝜀, permeability 𝜇 and conductivity 𝜎.
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These two equations are solved by the DGTD method to obtain the
transient electric field 𝐄

(

𝐫, 𝑡𝑛
)

and magnetic field 𝐇
(

𝐫, 𝑡𝑛
)

at each time
step 𝑡𝑛 [13].

Then the dissipated power in the solution domain at 𝑡𝑛 is calculated:

𝑃𝑑 = 𝜎 |𝐄|2 (3)

which serves as the transient heat source 𝑄
(

𝑡𝑛
)

for thermal simulation.
After that, the thermal simulation is carried out with the governing

equation of heat conduction equation:

𝜌𝐶𝜌
𝜕𝑇
𝜕𝑡

= ∇ ⋅ (𝜅∇𝑇 ) +𝑄 (4)

where 𝜌 represents the mass density, 𝐶𝜌 is the specific heat capacity,
and 𝜅 refers to the thermal conductivity. This equation is solved by the
FETD method to obtain the transient temperature distribution 𝑇

(

𝐫, 𝑡𝑛
)

at 𝑡𝑛 [14].
The modification of temperature has an influence on the consti-

tutive parameters of materials like permittivities, permeabilities and
conductivities in Maxwell curl equations. Here we only consider the
temperature dependent conductivities for the sake of simplicity:

𝜎 =
𝜎0

1 + 𝛼(𝑇 − 𝑇𝑖)
(5)

where 𝜎0 represents the conductivity at initial temperature 𝑇𝑖, and 𝛼 is
the temperature coefficient of the material.

The changes of the constitutive parameters of materials will affect
the distribution of electromagnetic fields. Thus the electromagnetic
simulation at the next time step will be carried out again with the
updated constitutive parameters of materials. This process repeats until
the predetermined number of time steps 𝑁𝑡 is completed or steady
solution is reached.

The reason why we do not adopt the DGTD method for thermal
simulation is given as follows. (1) The heat conduction equation is a
parabolic partial differential equation. Contrarily, the DGTD method
can only be applied to hyperbolic partial differential equations. In order
to use the DGTD for the thermal simulation, an auxiliary vector variable
needs to be introduced to transform the heat conduction equation to
a hyperbolic equation [15,16], which makes a simple problem com-
plicated. Moreover, the memory requirement will increase greatly if
the DGTD method is utilized for the thermal simulation. (2) According
to [15], only Dirichlet boundary condition and convection boundary
condition were implemented for the thermal simulation. However, the
thermal radiation boundary condition cannot be implemented since the
contained nonlinear terms in radiation boundary condition cannot be
expressed in the numerical fluxes of the DGTD method. The thermal
radiation boundary condition is indispensable since any object above
the absolute zero will emit heat to environment. It is convenient to
implement the thermal radiation boundary condition in FETD method
[14].

2.2. Memory reduction of DGTD method for electromagnetic-thermal co-
simulation

As described in Section 1, the memory consumption of the DGTD
method is higher than the FEM method. Therefore, the memory cost
of the DGTD method for electromagnetic simulation is much more
than that of the FETD method for thermal simulation. To alleviate this
computational issue, a memory reduction technique is introduced to
the DGTD method to reduce the memory cost of the electromagnetic-
thermal co-simulation.

The final full-discrete marching-on-in-time matrix equation for the
DGTD method with an upwind numerical flux can be expressed as [13]:

𝐞𝑖𝑛+1 = 𝐞𝑖𝑛 + (𝛥𝑡∕𝜀)
[

𝐌𝑖]−1
[

𝐒𝑖𝐡𝑖𝑛+1∕2+𝐅
𝑖𝑖
𝑒𝑒𝐞

𝑖
𝑛 − 𝐅𝑖𝑗

𝑒𝑒𝐞
𝑗
𝑛 − 𝐅𝑖𝑖

𝑒ℎ𝐡
𝑖
𝑛+1∕2

+𝐅𝑖𝑗
𝑒ℎ𝐡

𝑗
𝑛+1∕2 − 𝐂𝑖𝐞𝑖𝑛

]

(6)
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Table 1
The expansion coefficients 𝑁𝑘𝑚 of the twenty second order hierarchical vector basis
functions.
𝑘 𝑚

1 2 3

1 −𝐿2 𝐿1 0
2 −𝐿3 0 𝐿1
3 −1 + 𝐿2 + 𝐿3 −𝐿1 −𝐿1
4 0 −𝐿3 𝐿2
5 𝐿2 1 − 𝐿1 − 𝐿3 𝐿2
6 −𝐿3 −𝐿3 −1 + 𝐿1 + 𝐿2
7 𝐿2 𝐿1 0
8 𝐿3 0 𝐿1
9 1 − 2𝐿1 − 𝐿2 − 𝐿3 −𝐿1 −𝐿1
10 0 𝐿3 𝐿2
11 −𝐿2 1 − 𝐿1 − 2𝐿2 − 𝐿3 −𝐿2

12 −𝐿3 −𝐿3 1 − 𝐿1 − 𝐿2 − 2𝐿3

13 −𝐿2𝐿3 𝐿1𝐿3 0
14 −𝐿3(1 − 𝐿1 − 𝐿2 − 𝐿3) 0 𝐿1(1 − 𝐿1 − 𝐿2 − 𝐿3)

15 −𝐿2(1 − 𝐿1 − 𝐿2 − 𝐿3) 𝐿1(1 − 𝐿1 − 𝐿2 − 𝐿3) 0
16 0 −𝐿3(1 − 𝐿1 − 𝐿2 − 𝐿3) 𝐿2(1 − 𝐿1 − 𝐿2 − 𝐿3)

17 0 𝐿1𝐿3 −𝐿1𝐿2

18 𝐿1𝐿3 𝐿1𝐿3 𝐿1(1 − 𝐿1 − 𝐿2)

19 𝐿1𝐿2 𝐿1(1 − 𝐿1 − 𝐿3) 𝐿1𝐿2

20 𝐿2𝐿3 𝐿2𝐿3 𝐿2(1 − 𝐿1 − 𝐿2)

𝐡𝑖𝑛+3∕2 = 𝐡𝑖𝑛+1∕2 + (𝛥𝑡∕𝜇)
[

𝐌𝑖]−1
[

−𝐒𝑖𝐞𝑖𝑛+1+𝐅
𝑖𝑖
ℎℎ𝐡

𝑖
𝑛+1∕2 − 𝐅𝑖𝑗

ℎℎ𝐡
𝑗
𝑛+1∕2

+𝐅𝑖𝑖
ℎ𝑒𝐞

𝑖
𝑛+1 − 𝐅𝑖𝑗

ℎ𝑒𝐞
𝑗
𝑛+1

]

(7)

where
[

𝐌𝑖]
𝑘𝑙 = ∫𝑉𝑖

𝐍𝑖
𝑘 ⋅ 𝐍

𝑖
𝑙𝑑𝑉 (8)

[

𝐒𝑖
]

𝑘𝑙 = ∫𝑉𝑖
𝐍𝑖
𝑘 ⋅ (∇ × 𝐍𝑖

𝑙)𝑑𝑉 (9)

[

𝐅𝑖𝑖
𝑒ℎ
]

𝑘𝑙=
𝑍𝑗

𝑍 𝑖 +𝑍𝑗 ∫𝜕𝑉𝑖
𝐍𝑖
𝑘 ⋅ (�̂� × 𝐍𝑖

𝑙)𝑑𝑆 (10)

[

𝐅𝑖𝑗
𝑒ℎ

]

𝑘𝑙
= 𝑍𝑗

𝑍 𝑖 +𝑍𝑗 ∫𝜕𝑉𝑖
𝐍𝑖
𝑘 ⋅ (�̂� × 𝐍𝑗

𝑙 )𝑑𝑆 (11)

[

𝐅𝑖𝑖
ℎ𝑒
]

𝑘𝑙=
𝑌 𝑗

𝑌 𝑖 + 𝑌 𝑗 ∫𝜕𝑉𝑖
𝐍𝑖
𝑘 ⋅ (�̂� × 𝐍𝑖

𝑙)𝑑𝑆 (12)

[

𝐅𝑖𝑗
ℎ𝑒

]

𝑘𝑙
= 𝑌 𝑗

𝑌 𝑖 + 𝑌 𝑗 ∫𝜕𝑉𝑖
𝐍𝑖
𝑘 ⋅ (�̂� × 𝐍𝑗

𝑙 )𝑑𝑆 (13)

[

𝐅𝑖𝑖
𝑒𝑒
]

𝑘𝑙=
1

𝑍 𝑖 +𝑍𝑗 ∫𝜕𝑉𝑖
𝐍𝑖
𝑘 ⋅ (�̂� × �̂� × 𝐍𝑖

𝑙)𝑑𝑆 (14)

[

𝐅𝑖𝑗
𝑒𝑒
]

𝑘𝑙=
1

𝑍 𝑖 +𝑍𝑗 ∫𝜕𝑉𝑖
𝐍𝑖
𝑘 ⋅ (�̂� × �̂� × 𝐍𝑗

𝑙 )𝑑𝑆 (15)

[

𝐅𝑖𝑖
ℎℎ
]

𝑘𝑙=
1

𝑌 𝑖 + 𝑌 𝑗 ∫𝜕𝑉𝑖
𝐍𝑖
𝑘 ⋅ (�̂� × �̂� × 𝐍𝑖

𝑙)𝑑𝑆 (16)

[

𝐅𝑖𝑗
ℎℎ

]

𝑘𝑙
= 1
𝑌 𝑖 + 𝑌 𝑗 ∫𝜕𝑉𝑖

𝐍𝑖
𝑘 ⋅ (�̂� × �̂� × 𝐍𝑗

𝑙 )𝑑𝑆 (17)

[

𝐂𝑖]
𝑘𝑙 = ∫𝑉𝑖

𝜎𝐍𝑖
𝑘 ⋅ 𝐍

𝑖
𝑙𝑑𝑉 (18)

The superscript 𝑖 or 𝑗 means that the quantity relates to the 𝑖th
element or adjacent 𝑗th element. 𝑁𝑘 is the basis function. The second-
order hierarchical vector basis functions are adopted [17,18]:

𝐍𝑘 =
3
∑

𝑚=1
𝑁𝑘𝑚

(

𝐿1, 𝐿2, 𝐿3
)

∇𝐿𝑚 𝑘 = 1,… , 20 (19)

where 𝐿𝑚 (𝑚 = 1, 2, 3, 4) is the volume coordinate of the tetrahedron
element and 𝐿1 + 𝐿2 + 𝐿3 + 𝐿4 = 1. The expansion coefficients
𝑁

(

𝐿 ,𝐿 ,𝐿
)

are given in Table 1. Since the total number of the
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𝑘𝑚 1 2 3 c
Fig. 3. (a) Tetrahedral element in a global (𝑥, 𝑦, 𝑧)-coordinate system (b) Tetrahedral
element in a normalized (𝐿1 , 𝐿2 , 𝐿3)-coordinate system.

second-order hierarchical vector basis functions is twenty in each tetra-
hedral element, the sizes of the element matrices in (8)–(18) can be
summarized in Table 2 for the traditional higher-order DGTD method.
These element matrices need to be stored for each tetrahedral element.
Therefore, the memory requirement is huge when a large-scale problem
is analyzed.

In order to reduce the memory requirement of the DGTD method,
the calculation methods of the element matrices in (9)–(18) are opti-
mized. Note that the mass matrix

[

𝐌𝑖] in (8) needs to be inversed before
olving (6) and (7). The inverse matrix can share the same memory
pace with

[

𝐌𝑖]. Thus there is no need to optimize the calculation
ethod of

[

𝐌𝑖].
(1) The matrix

[

𝐂𝑖] in (18) can be calculated as

𝐂𝑖]
𝑘𝑙 = 𝜎 ∫𝑉𝑖

𝐍𝑖
𝑘 ⋅ 𝐍

𝑖
𝑙𝑑𝑉

= 𝜎 ∫𝑉𝑖
(

3
∑

𝑚=1
𝑁 𝑖

𝑘𝑚∇𝐿
𝑖
𝑚) ⋅ (

3
∑

𝑛=1
𝑁 𝑖

𝑙𝑛∇𝐿
𝑖
𝑛)𝑑𝑉

= 𝜎
3
∑

𝑚=1

3
∑

𝑛=1
∇𝐿𝑖

𝑚 ⋅ ∇𝐿𝑖
𝑛 ∫𝑉𝑖

𝑁 𝑖
𝑘𝑚𝑁

𝑖
𝑙𝑛𝑑𝑉

(20)

A coordinate transformation is introduced to simplify the calcula-
ion of the integral in (20). As shown in Fig. 3, a tetrahedral element in
he global (𝑥, 𝑦, 𝑧)-coordinate system is transformed into a normalized
𝐿1, 𝐿2, 𝐿3)-coordinate system. Each point (𝑥, 𝑦, 𝑧) of the tetrahedral
lement in the global coordinate system can be transformed to a
orresponding point (𝐿1, 𝐿2, 𝐿3) in the normalized coordinate system
ith the following relationship:

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

= 𝐉
⎡

⎢

⎢

⎣

𝐿1
𝐿2
𝐿3

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑥4
𝑦4
𝑧4

⎤

⎥

⎥

⎦

(21)

=
⎡

⎢

⎢

⎣

𝑥1 − 𝑥4 𝑥2 − 𝑥4 𝑥3 − 𝑥4
𝑦1 − 𝑦4 𝑦2 − 𝑦4 𝑦3 − 𝑦4
𝑧1 − 𝑧4 𝑧2 − 𝑧4 𝑧3 − 𝑧4

⎤

⎥

⎥

⎦

(22)

is the Jacobian matrix which only depends on the global coordinates
𝑥, 𝑦, 𝑧).

Then the element integral in (20) can be calculated in the normal-
zed coordinate system:

𝑉𝑖
𝑁 𝑖

𝑘𝑚𝑁
𝑖
𝑙𝑛𝑑𝑉 = |𝐉|∫𝑉𝑟𝑒𝑓

𝑁 𝑖
𝑘𝑚𝑁

𝑖
𝑙𝑛𝑑𝑉

= |𝐉|∫
1

𝐿1=0
∫

1−𝐿1

𝐿2=0
∫

1−𝐿1−𝐿2

𝐿3=0
𝑁 𝑖

𝑘𝑚𝑁
𝑖
𝑙𝑛𝑑𝐿1𝑑𝐿2𝑑𝐿3

(23)

Note that the integral in (23) only depends on the reference element
n the normalized coordinate system. So this integral only needs to be

alculated once for all the elements.
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Fig. 4. Flow chart of the parallel algorithm.
Substituting (23) into (20), we can obtain

[

𝐂𝑖]
𝑘𝑙 = 𝜎

3
∑

𝑚=1

3
∑

𝑛=1

[

𝐂𝑖
𝑐𝑜𝑒𝑓

]

𝑚𝑛

[

𝐂𝑖
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙

](𝑘𝑙)
𝑚𝑛 (24)

where
[

𝐂𝑖
𝑐𝑜𝑒𝑓

]

𝑚𝑛
= 6𝑉𝑒∇𝐿𝑖

𝑚 ⋅ ∇𝐿𝑖
𝑛 (25)

[

𝐂𝑖
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙

](𝑘𝑙)
𝑚𝑛 = ∫

1

𝐿1=0
∫

1−𝐿1

𝐿2=0
∫

1−𝐿1−𝐿2

𝐿3=0
𝑁 𝑖

𝑘𝑚𝑁
𝑖
𝑙𝑛𝑑𝐿1𝑑𝐿2𝑑𝐿3 (26)

where 𝑉𝑒 is the volume of tetrahedron element. According to (24), we
can store

[

𝐂𝑖
𝑐𝑜𝑒𝑓

]

and
[

𝐂𝑖
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙

](𝑘𝑙) instead of store
[

𝐂𝑖]. Obviously, the

matrix
[

𝐂𝑖
𝑐𝑜𝑒𝑓

]

is element dependent with the size of 3×3 (𝑚 = 1, 2, 3, 𝑛 =

1, 2, 3) for each tetrahedral element in the global coordinate system,
while the matrix

[

𝐂𝑖
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙

](𝑘𝑙) is element independent with the size of
3×3×20×20 (𝑚 = 1, 2, 3, 𝑛 = 1, 2, 3, 𝑘 = 1,… , 20, 𝑙 = 1,… , 20). Therefore,
1180
[

𝐂𝑖
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙

](𝑘𝑙) is calculated only once and its memory consumption is
negligible.

[

𝐂𝑖
𝑐𝑜𝑒𝑓

]

needs to be stored for each element but its size 3 × 3

is much smaller than
[

𝐂𝑖] with the size of 20 × 20.
(2) Substituting (19) into (9), we can obtain

∇ × 𝐍𝑖
𝑙 = ∇ ×

( 3
∑

𝑚=1
𝑁 𝑖

𝑙𝑚∇𝐿
𝑖
𝑚

)

=
3
∑

𝑚=1
𝑆𝑖
𝑙𝑚𝐛

𝑖
𝑚 (27)

where

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝑆𝑖
𝑙1 =

𝜕𝑁 𝑖
𝑙3

𝜕𝐿𝑖
2

−
𝜕𝑁 𝑖

𝑙2

𝜕𝐿𝑖
3

𝑆 𝑖
𝑙2 =

𝜕𝑁 𝑖
𝑙1

𝜕𝐿𝑖
3

−
𝜕𝑁 𝑖

𝑙3

𝜕𝐿𝑖
1

𝑆 𝑖
𝑙3 =

𝜕𝑁 𝑖
𝑙2
𝑖 −

𝜕𝑁 𝑖
𝑙1
𝑖

(28)
⎩
𝜕𝐿1 𝜕𝐿2



Engineering Analysis with Boundary Elements 155 (2023) 1177–1185Z. Jia et al.
⎧

⎪

⎨

⎪

⎩

𝐛𝑖1 = ∇𝐿𝑖
2 × ∇𝐿𝑖

3

𝐛𝑖2 = ∇𝐿𝑖
3 × ∇𝐿𝑖

1

𝐛𝑖3 = ∇𝐿𝑖
1 × ∇𝐿𝑖

2

(29)

Thus

[

𝐒𝑖
]

𝑘𝑙 = ∫𝑉𝑖
(

3
∑

𝑚=1
𝑁 𝑖

𝑘𝑚∇𝐿
𝑖
𝑚)⋅(

3
∑

𝑛=1
𝑆 𝑖
𝑙𝑛𝐛

𝑖
𝑛)𝑑𝑉

=
3
∑

𝑚=1

3
∑

𝑛=1

[

𝐒𝑖𝑐𝑜𝑒𝑓
]

𝑚𝑛

[

𝐒𝑖𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙
](𝑘𝑙)
𝑚𝑛

(30)

where
[

𝐒𝑖𝑐𝑜𝑒𝑓
]

𝑚𝑛
= 6𝑉𝑒∇𝐿𝑖

𝑚 ⋅ 𝐛𝑖𝑛 (31)

[

𝐒𝑖𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙
](𝑘𝑙)
𝑚𝑛 = ∫

1

𝐿1=0
∫

1−𝐿1

𝐿2=0
∫

1−𝐿1−𝐿2

𝐿3=0
𝑁 𝑖

𝑘𝑚𝑆
𝑖
𝑙𝑛𝑑𝐿1𝑑𝐿2𝑑𝐿3 (32)

According to (30), we can store
[

𝐒𝑖𝑐𝑜𝑒𝑓
]

and
[

𝐒𝑖𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙
](𝑘𝑙) instead of

store
[

𝐒𝑖
]

. The size of
[

𝐒𝑖𝑐𝑜𝑒𝑓
]

compared with
[

𝐒𝑖
]

is given in Table 2.
(3) According to (14) and (16), the only difference between 𝐅𝑖𝑖

𝑒𝑒 and
𝐅𝑖𝑖
ℎℎ is their coefficient, so their calculation methods are similar. Take

𝐅𝑖𝑖
𝑒𝑒 as an example, it can be calculated as

[

𝐅𝑖𝑖
𝑒𝑒
]

𝑘𝑙 =
1

𝑍𝑖 +𝑍𝑗

3
∑

𝑚=1

3
∑

𝑛=1

[

𝐅𝑖𝑖
𝑐𝑜𝑒𝑓

]𝑒𝑒

𝑚𝑛

[

𝐅𝑖𝑖
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙

](𝑘𝑙)
𝑚𝑛 (33)

where
[

𝐅𝑖𝑖
𝑐𝑜𝑒𝑓

]𝑒𝑒

𝑚𝑛
= 2𝐴∇𝐿𝑖

𝑚 ⋅
(

�̂� × �̂� × ∇𝐿𝑖
𝑛
)

(34)

[

𝐅𝑖𝑖
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙

](𝑘𝑙)
𝑚𝑛 = ∫

1

𝐿1=0
∫

1−𝐿1

𝐿2=0
𝑁 𝑖

𝑘𝑚𝑁
𝑖
𝑙𝑛𝑑𝐿1𝑑𝐿2 (35)

where 𝐴 is the area of a face in the tetrahedron element.
(4) According to (10) and (12), the only difference between 𝐅𝑖𝑖

𝑒ℎ and
𝐅𝑖𝑖
ℎ𝑒 is their coefficients, so their calculation methods are similar. Take

𝐅𝑖𝑖
𝑒ℎ as an example, it can be calculated as

[

𝐅𝑖𝑖
𝑒ℎ
]

𝑘𝑙 =
𝑍𝑗

𝑍 𝑖 +𝑍𝑗

3
∑

𝑚=1

3
∑

𝑛=1

[

𝐅𝑖𝑖
𝑐𝑜𝑒𝑓

]𝑒ℎ

𝑚𝑛

[

𝐅𝑖𝑖
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙

](𝑘𝑙)
𝑚𝑛 (36)

where
[

𝐅𝑖𝑖
𝑐𝑜𝑒𝑓

]𝑒ℎ

𝑚𝑛
= 2𝐴∇𝐿𝑖

𝑚 ⋅
(

�̂� × ∇𝐿𝑖
𝑛
)

(37)

Note that the universal matrix in 𝐅𝑖𝑖
𝑒𝑒, 𝐅

𝑖𝑖
ℎℎ, 𝐅𝑖𝑖

𝑒ℎ and 𝐅𝑖𝑖
ℎ𝑒 are the same,

namely
[

𝐅𝑖𝑖
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙

](𝑘𝑙).
(5) According to (15) and (17), the calculation methods of 𝐅𝑖𝑗

𝑒𝑒 and
𝐅𝑖𝑗
ℎℎ are similar. Take 𝐅𝑖𝑗

𝑒𝑒 as an example, it can be calculated as

[

𝐅𝑖𝑗
𝑒𝑒
]

𝑘𝑙 =
1

𝑍𝑖 +𝑍𝑗

3
∑

𝑚=1

3
∑

𝑛=1

[

𝐅𝑖𝑗
𝑐𝑜𝑒𝑓

]𝑒𝑒

𝑚𝑛

[

𝐅𝑖𝑗
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙

](𝑘𝑙)

𝑚𝑛
(38)

where
[

𝐅𝑖𝑗
𝑐𝑜𝑒𝑓

]𝑒𝑒

𝑚𝑛
= 2𝐴∇𝐿𝑖

𝑚 ⋅
(

�̂� × �̂� × ∇𝐿𝑗
𝑛
)

(39)

[

𝐅𝑖𝑗
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙

](𝑘𝑙)

𝑚𝑛
= ∫

1

𝐿1=0
∫

1−𝐿1

𝐿2=0
𝑁 𝑖

𝑘𝑚𝑁
𝑗
𝑙𝑛𝑑𝐿1𝑑𝐿2 (40)

(6) According to (11) and (13), the calculation methods of 𝐅𝑖𝑗
𝑒ℎ and

𝐅𝑖𝑗
ℎ𝑒 are similar. Take 𝐅𝑖𝑗

𝑒ℎ as an example, it can be calculated as

[

𝐅𝑖𝑗
𝑒ℎ

]

𝑘𝑙
= 𝑍𝑗

𝑍 𝑖 +𝑍𝑗

3
∑

𝑚=1

3
∑

𝑛=1

[

𝐅𝑖𝑗
𝑐𝑜𝑒𝑓

]𝑒ℎ

𝑚𝑛

[

𝐅𝑖𝑗
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙

](𝑘𝑙)

𝑚𝑛
(41)

where
[

𝐅𝑖𝑗
]𝑒ℎ

= 2𝐴∇𝐿𝑖 ⋅
(

�̂� × ∇𝐿𝑗 ) (42)
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𝑐𝑜𝑒𝑓 𝑚𝑛 𝑚 𝑛
Table 2
Comparison of the memory requirements between the traditional higher-order DGTD
method and the proposed method.

Matrices Traditional method Matrices Proposed method
[

𝐌𝑖] 20 × 20
[

𝐌𝑖] 20 × 20
[

𝐂𝑖] 20 × 20
[

𝐂𝑖
𝑐𝑜𝑒𝑓

]

3 × 3
[

𝐒𝑖
]

20 × 20
[

𝐒𝑖𝑐𝑜𝑒𝑓
]

3 × 3
[

𝐅𝑖𝑖
𝑒𝑒

]

20 × 20 [

𝐅𝑖𝑖
𝑐𝑜𝑒𝑓

]𝑒𝑒,ℎℎ
3 × 3 × 4

[

𝐅𝑖𝑖
ℎℎ

]

20 × 20
[

𝐅𝑖𝑖
𝑒ℎ

]

20 × 20 [

𝐅𝑖𝑖
𝑐𝑜𝑒𝑓

]𝑒ℎ,ℎ𝑒
3 × 3 × 4

[

𝐅𝑖𝑖
ℎ𝑒

]

20 × 20
[

𝐅𝑖𝑗
𝑒𝑒,ℎℎ

]

20 × 20 × 4
[

𝐅𝑖𝑗
𝑐𝑜𝑒𝑓

]𝑒𝑒,ℎℎ
3 × 3 × 4

[

𝐅𝑖𝑗
𝑒ℎ,ℎ𝑒

]

20 × 20 × 4
[

𝐅𝑖𝑗
𝑐𝑜𝑒𝑓

]𝑒ℎ,ℎ𝑒
3 × 3 × 4

Fig. 5. A microstrip low-pass filter.

Fig. 6. Port voltages V1 and V2 obtained by the proposed method and COMSOL based
on single electromagnetic simulation.

Note that the universal matrix in 𝐅𝑖𝑗
𝑒𝑒, 𝐅

𝑖𝑗
ℎℎ, 𝐅𝑖𝑗

𝑒ℎ and 𝐅𝑖𝑗
ℎ𝑒 are the same,

namely
[

𝐅𝑖𝑗
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙

](𝑘𝑙)
.

The sizes of the element matrices in (8)–(18) in traditional com-
putation method and the sizes of the corresponding matrices which
primarily need to be stored in the proposed method are compared and
summarized in Table 2. Apparently the sizes of the matrices to be stored
in the proposed method is much smaller than the traditional method,
resulting in remarkable memory saving.
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Fig. 7. Electric field distributions at 𝑡 = 0.5 ns: (a) Proposed. (b) COMSOL.
Fig. 8. Temperature distributions at 𝑡 = 0.5 ns: (a) Proposed. (b) COMSOL.
2.3. Parallel strategies

The electromagnetic-thermal co-simulation algorithm is parallelized
based on MPI technique. Fig. 4 shows the parallel algorithm flow
chart. Firstly, the tetrahedral meshes are divided into different groups
by using the METIS software [19]. The group information for all the
tetrahedral elements is recorded in a mesh file, which is read by the
process 0 and distributed to other processes. In the following, each
process will only carry out computations related to its own meshes.

Then the inverse matrix of
[

𝐌𝑖] in (8), the coefficient matrices and
universal matrices for the matrices in (9)–(18) of DGTD method are
computed and stored for the electromagnetic simulation. The element
matrices and the global matrices of FETD method corresponding to each
process are computed for the thermal simulation.

After above matrices are computed, the matrix equations for the
electromagnetic simulation and thermal simulation are solved in a
marching-on-in-time manner. The matrix Eq. (6) is solved element by
element to obtain the electric fields, during which the matrices in (9)–
(18) are computed based on the coefficient matrices and universal
matrices. Then the heat source for the thermal simulation is calculated
and the temperature distributions are obtained by solving the matrix
equation of FETD method. At last, the magnetic fields are calculated
by solving (7). After the electric fields, temperature distributions and
magnetic fields are computed, the program will end if the current
number of time steps equals to the specified number of time steps 𝑁𝑡.
Otherwise, the constitutive parameters of materials are updated. The
matrix equations for electromagnetic and thermal simulation are solved
for the next time step.

3. Numerical results

In this section, two numerical examples are given to demonstrate
the performance of the proposed method. The electromagnetic proper-
ties of the microstrip filters are analyzed with a single electromagnetic
simulation and the electromagnetic-thermal co-simulation. All the sim-
ulations are carried out using 16 processes parallel computation on a
workstation with Intel Xeon Gold 6248R CPU with 48 cores and 1 TB
RAM.
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Fig. 9. Port voltages V1 and V2 obtained by the proposed method and COMSOL based
on electromagnetic-thermal co-simulation.

3.1. Electromagnetic-thermal co-simulation of a microstrip low-pass filter

As illustrated in Fig. 5, a microstrip low-pass filter resides 0.794 mm
above the ground plane. The length and width of the ground plane are
30 mm and 25.398 mm, respectively. The relative dielectric constant
and conductivity of the substrate are 2.2 and 0.1 S/m, respectively. Port
1 and port 2 are two lumped ports. In order to model the scenario of
the injection of high power pulse, a Gaussian pulse source is utilized
as the excitation at port 1. The expression for the Gaussian pulse is as
follows:

𝑉𝑠 (𝑡) = 𝑉0 exp

[

−
4𝜋(𝑡 − 𝑡0)

2

𝜏2

]

(43)

where 𝑉0 = 3 × 106 V and 𝑡0 = 𝜏 = 0.1 ns. Port 2 is connected with
a 50 Ω resistor. The perfectly matched layer (PML) is used to truncate
the computational domain. The whole geometry is meshed into 34 756
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Table 3
Memory usage and time consumption of the traditional higher-order DGTD method and the proposed method.

Model Elements Traditional method Proposed method Memory usage ratio Time consumption ratio

Memory (MB) Time (s) Memory (MB) Time (s)

Low-pass filter 34 756 1635.7 4652 193.8 7817 0.118 1.68
Band-stop filter 34 607 1628.6 4744 193.3 7753 0.119 1.63
Fig. 10. S11 and S21 curves of the microstrip low-pass filter based on single
electromagnetic simulation and electromagnetic-thermal co-simulation.

tetrahedral elements. The total simulation time is set to be 1.5 ns. The
total number of time steps is 50,000.

Firstly, the single electromagnetic simulation is carried out with
our own code and the COMSOL software. As shown in Fig. 6, the
port voltages V1 and V2 obtained by the proposed method are in
good agreement with COMSOL. Then the electromagnetic-thermal co-
simulation of the microstrip low-pass filter is conducted. The thermal
parameters are 𝜌 = 2330 kg∕m3, C𝜌 = 704 J∕ (kg K), 𝛼 = 0.2 (1∕K),
and 𝜅 = 30 W∕ (m K). In the thermal simulation, it is assumed that
all boundary surfaces of the model are convective boundary conditions
with the heat transfer coefficient ℎ = 5 W∕

(

m2 K
)

. The ambient
temperature and initial temperature are 293.15 K. Figs. 7 and 8 present
the electric field and temperature distributions on the plane of z =
0 mm at 0.5 ns obtained by the proposed method and COMSOL. Good
agreement can be observed. The port voltages are shown in Fig. 9. The
results obtained by our proposed method are also in good agreement
with COMSOL.

As shown in Fig. 10, the S11 and S21 curves of the filter are com-
puted based on the port voltages obtained by the single electromagnetic
simulation and electromagnetic-thermal co-simulation. Significant dif-
ferences between the electromagnetic simulation and electromagnetic-
thermal co-simulation can be observed, which clearly demonstrates the
temperature-drift effect of microstrip filters and supports the necessity
of the electromagnetic-thermal co-simulation. As shown in Table 3, if
the traditional electromagnetic-thermal co-simulation method without
the memory reduction technique is adopted for this problem, the mem-
ory consumption is 1635.7 MB. In contrast, if the proposed method is
utilized, the memory consumption is 193.8 MB, which is only 11.8% of
the traditional method. The memory reduction of the proposed method
is at the expense of computation time. As we can observe from Table 3,
the CPU time of the proposed method is 1.68 times of the traditional
method.

3.2. Electromagnetic-thermal co-simulation of a microstrip band-stop filter

In the second example, a microstrip band-stop filter working at
different ambient temperatures is simulated to investigate the influence
1183
Fig. 11. A microstrip band-stop filter.

Fig. 12. The voltages of port a corresponding to ambient temperatures of 253.15 K,
293.15 K and 353.15 K.

of ambient temperature on the electromagnetic property of microstrip
filter. As illustrated in Fig. 11, the microstrip band-stop filter resides
0.57 mm above the ground plane. The length and width of the ground
plane are 22.1 mm and 16.5 mm, respectively. The relative dielectric
constant and conductivity of the substrate are 2 and 0.1 S/m, respec-
tively. The thermal parameters are the same as the first example, except
for 𝛼 = 0.02 (1∕K). Port a and port b are two lumped ports. The port
a is driven by a Gaussian pulse source, its expression is shown in (43),
where 𝑉0 = 10 V and 𝑡0 = 𝜏 = 0.3 ns. Port b is connected with a
50 Ω resistor. The whole structure is meshed into 34 607 tetrahedral
elements. The total simulation time is set to be 1.5 ns. The total number
of time steps is 50,000.

Electromagnetic-thermal co-simulations of the microstrip band-stop
filter working at ambient temperatures of 253.15 K, 293.15 K and
353.15 K are carried out by the proposed method. As shown in Figs. 12
and 13, the port voltages change significantly when the ambient tem-
peratures deviate from the room temperature of 293.15 K. The electric
distributions on the plane of z = 0 mm at 0.5 ns are shown in Fig. 14.
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Fig. 13. The voltages of port b corresponding to ambient temperatures of 253.15 K,
293.15 K and 353.15 K.

Fig. 14. Electric field distributions at t = 0.3 ns corresponding to different ambient
temperatures: (a) 253.15 K, (b) 293.15 K, (c) 353.15 K.

It can be observed that the electric distributions corresponding to
different ambient temperatures are obviously different.

As shown in Figs. 15 and 16, the S11 and S21 curves of the
microstrip band-stop filter are computed based on the port voltages in
Figs. 12 and 13. Similar with the first numerical example, significant
temperature-drift effect can be observed. As shown in Table 3, if the
traditional electromagnetic-thermal co-simulation method without the
memory reduction technique is adopted for this problem, the memory
consumption is 1628.6 MB. In contrast, if the proposed method is
utilized, the memory consumption is 193.3 MB, which is only 11.9%
of the traditional method. The CPU time of the proposed method is
1.63 times of the traditional method.
1184
Fig. 15. Comparison of S11 under different ambient temperatures.

Fig. 16. Comparison of S21 under different ambient temperatures.

4. Conclusion

A transient electromagnetic-thermal co-simulation method is pro-
posed for the analyze of temperature-drift effect of microstrip filters.
The DGTD method with the higher-order hierarchical vector basis
functions and the memory reduction technique is adopted for the elec-
tromagnetic simulation. The FETD method is utilized for the thermal
simulation. Large-scale parallel technique is used to accelerate the
simulation process. Numerical results show that the proposed method
can efficiently reduce the memory requirement of the electromagnetic-
thermal co-simulation method, which allows for an effective and pow-
erful tool for the temperature-drift effect analyze of microstrip filters
in complicated engineering applications.
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