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2.1 Introduction

This chapter aims to introduce the recent developments, basic theories, core 
techniques, real-world applications, and future directions for the finite-
difference time-domain (FDTD) method. The unified theoretical frameworks 
of the FDTD method and its advances (Runge Kutta-FDTD, symplectic FDTD, 
alternative direction implicit-FDTD, high-order FDTD, multiresolution-TD, 
pseudospectral-TD, etc.) for solving Maxwell’s equations are systematically 
reviewed in Section 2.1. Next, we will briefly describe core techniques of the 
FDTD method (involving the basic update equations, material averaging 
technique, perfectly matched layer, source excitation, near-to-far-field trans-
formation, periodic boundary condition, and treatment of dispersive media) 
and particularly focus on those for nano-optics applications in Section 2.2. In 
Section 2.3, we will demonstrate powerful capabilities of the FDTD method to 
model versatile physical problems in the nano-optics field. The case studies 
on plasmonic solar cells, nanoantennas, spontaneous emissions, and meta-
materials will be discussed with detailed physical understandings. Then, 
the numerical analyses and implementations of the FDTD method to simu-
late the Schrödinger equation are presented in Section 2.4. In Section 2.5, we 
will show several simple examples on the numerical solution of quantum 
physics problems with the FDTD method. Finally, the conclusion and future 
direction are summarized in Section 2.6.

The concept of Yee grid was proposed in 1966 [1]. Until now, the traditional 
finite-difference time-domain (FDTD) method [2–4] has been widely applied 
to broad-band, transient, and full-wave analyses for solving Maxwell’s equa-
tions owing to its simplicity, generality, and facility for parallel computing. 
However, the FDTD method has two main drawbacks. One is the undesir-
able numerical results caused by the significant accumulated errors from 
numerical instability, dispersion, and anisotropy, especially for long-term 
simulations and electrically large objects. Another is the inability to accu-
rately model curved conducting surfaces and material discontinuities by 
using the staircase model with structured grids.

To overcome the two shortcomings, a variety of improved methods 
were proposed. Reviews of recent advances in the FDTD method will not 
only facilitate developing fast and efficient solvers in the computational 
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electromagnetics field but also gain physical and mathematical insights to 
solve real-world engineering problems.

Any field components in Maxwell’s equations can be defined as

 ( )= Δ Δ Δ + τ Δ+F x y z t F i j k nn l m
x y z l t( , , , ) ( , , , )/

 (2.1)

where Δx , Δy, and Δz  are the space steps respectively along the x-, y-, and 
z-directions, Δt  is the time step, i, j, k, n, l, and m are integers, n+l/m denotes 
the lth stage iteration after n time steps, m is the number of stages in each 
time step, and τ Δl t  is the time increment corresponding to the lth stage.

The Maxwell’s equations can be written as the following form
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where = E E Ex y z
T( , , )E  is the electric field, = H H Hx y z

T( , , )H  is the magnetic 
field, T denotes the transpose, ×{0}3 3  is the 3 × 3 null matrix, ℜ is the curl 
operator, and ε0  and μ0  are the permittivity and permeability of free space.

The analytical solution of (2.2) from t = 0 to = Δt t  is
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2.1.1 Discretization Strategies in the Time Domain

Regarding the time domain, to approximate the time evolution matrix 
Δ Ltexp( ) , various discretization methods are proposed.



40 Computational Nanotechnology Using Finite Difference Time Domain

2.1.1.1 Runge-Kutta Method [3, 5, 6]

Using Taylor series to expand the time evolution matrix, we have

 ( )( ) ( ) ( ) ( )Δ = + Δ + Δ + Δ + Δ + ΔL I L L L L Ot t t t t texp /2! /3! /4!2 3 4 5

 (2.6)

A multistage strategy can be adopted to approach (2.6). The numerical imple-
mentation of the Runge-Kutta (R-K) method from the nth time step to the 
(n + 1)th time step is given by

 ( ) ( )= + Δ × + + ++
t /6 2 2F F F F F Fn 1 n

1 2 3 4  (2.7)

 ( )( )= = + Δ + Δ ⋅L t L t t t( , ), / 2, /2 1F F F F F1
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 ( ) ( )( )= + Δ + Δ ⋅ = + Δ + Δ ⋅L t L tt t t t/2, /2 , ,F F F F F F3
n

2 4
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3   (2.9)

where = H H H E E Ex y z x y z
T( , , , , , )F .

The R-K method is high-order accurate and has a good stability in the 
time direction. However, it introduces amplitude error and consumes a 
large quantity of memory. To save the memory, E. Turkel improved the 
traditional R-K method [3] with a reduction of half memory. For nonlin-
ear partial differential equations (PDEs), the improved R-K method is only 
second-order accurate. But it remains fourth-order accuracy for the linear 
Maxwell’s equations.

2.1.1.2 Second-Order Leap-Frog (Staggered) Time-Stepping Approach [1]

The matrix L can be split into the summation of the matrices U and V, i.e.,

 L = U + V (2.10)
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where U and V satisfy = γ ≥γU 0, 2, = γ ≥γV 0, 2, and UV ≠ VU.
According to the matrix decomposition technique, we can rewrite the time 

evolution matrix Δ +U Vtexp( ( )) as a product of matrices
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We employ the Taylor series to expand each term of (2.12) and then arrive at
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where I is the unit matrix.
So (2.12) can be rewritten as

 
( ) ( )Δ + = + Δ⎛

⎝⎜
⎞
⎠⎟ ⋅ + Δ ⋅ + Δ⎛

⎝⎜
⎞
⎠⎟ + ΔU V I

U
I V I

U
O tt

t
t

texp( )
2 2

( )2

 
(2.14)

By recombining the first with the third terms of (2.14) and adopting the 
staggered time-stepping strategy, we obtain the well-known leap-frog time-
stepping approach used in the traditional FDTD method. The approach is 
simple and requires only one iteration or stage in each time step. It has sec-
ond-order accuracy, and thus the error will accumulate under a long-term 
simulation.

2.1.1.3 Unconditionally Stable Algorithms [7–11]

Similar to (2.12), we recast the time evolution matrix into
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The Padé approximation is of form
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Alternatively employing Taylor and Padé expansions, (2.15) can be changed to
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The alternating direction implicit (ADI) algorithm [7, 8] can efficiently sim-
ulate electrically small objects with a large time step and a small space step. 
Unfortunately, the computational complexity of the algorithm increases due 
to the implicit matrix inversion in each time step compared to other explicit 
methods. Furthermore, a larger time step will make the numerical dispersion 
of the ADI algorithm worse, which can be improved by the unconditionally 
stable Crank-Nicolson scheme [10] but with higher computational complexity. 
Recently, an unconditionally stable one-step algorithm [9] has been proposed 
based on the accurate solution of the time evolution matrix in the space or 
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spectral domain. Although it saves a lot of CPU time, the one-step algorithm 
is very difficult to handle inhomogeneous boundary conditions.

2.1.1.4 High-Order Symplectic Integration Scheme [12–15]

With the aid of the high-order decomposition technique of the exponential 
matrix, the time evolution matrix can be approximately reconstructed by the 
m-stage pth-order symplectic integrator. Here, the matrix corresponding to 
each stage is called the elementary symplectic mapping
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where cl and dl are the symplectic integrators or propagators.
The high-order symplectic integration scheme has desired numerical pre-

cision and high numerical stability but needs multiple stages in every time 
step. Compared with the R-K method, it has the energy-preserving property 
and saves memory.

2.1.2 Space Discretization Methods

Besides discretization strategies in the time domain, versatile space discretiza-
tion methods are also proposed to approximate the spatial first-order derivatives.

2.1.2.1 Second-Order Leap-Frog (Staggered) Difference [1]
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where ( )+F h 1/ 2  denotes the value of F at ( )δ = + Δδh 1/ 2 , and ∂ ∂δ δ= Δδ
F

h
/  

denotes the first derivatives of F at δ = Δδh .
The second-order leap-frog (staggered) difference has advantages in terms 

of low complexity and natural parallelism. Meanwhile, it can model electro-
magnetic responses of inhomogeneous materials with curved boundaries 
by using local subgridding [16] and conformal techniques [17–21]. In view 
of a long-term or large-scale simulation, the method produces a significant 
numerical dispersion. Consequently, to accurately capture the wave physics 
of inhomogeneous scatterers, fine spatial grids should be adopted, which 
consumes a great number of computer resources.

2.1.2.2 Fourth-Order Staggered Difference [22–25]
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The fourth-order staggered difference achieves much lower numerical disper-
sion compared to the second-order staggered difference and shows potential 
advantages in large-scale electromagnetic simulations. The main pitfalls of 
the method involve low stability and difficult treatments of inhomogeneous 
boundaries. The former can be improved by introducing the R-K method or 
the symplectic integration scheme. The latter can be improved by recently 
developed high-order conformal and subgridding techniques [14,26–29].

2.1.2.3 Fourth-Order Implicit Compact Difference Algorithm [5, 6]
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The fourth-order implicit compact difference algorithm, which is more accu-
rate than the fourth-order explicit staggered difference method, could employ 
the same conformal and subgridding techniques as the second-order explicit 
staggered difference. However, a tridiagonal matrix inversion is required for 
each time step, resulting in low computational efficiency.

2.1.2.4 Multiresolution Expansion Method [30]
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where ∂ ∂δF h( / )  denotes the derivatives of F along the δ direction, ψ is the 
scaling function in the wavelet theory, and ′+Fh 1/2 denotes the sampling of F 
at the staggered grids.

The multiresolution expansion method saves a large quantity of memory 
and CPU time with drastically reduced sampling points per wavelength. 
Similar to the fourth-order staggered difference, it has low numerical stabil-
ity and is not good at modeling inhomogeneous boundaries. The multiple 
image technique (MIT) [31] partially overcomes the difficulties in boundary 
treatments. However, the high-order precision of the multiresolution expan-
sion method cannot be maintained.

2.1.2.5 Pseudo-Spectral Scheme [32]
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where ξ and ξ−1 respectively denote the forward and inverse operators 
of the centered discrete Fourier transform, Fh  denotes the sampling of F at the 
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collocated grids, Nδ is the number of sampling points, and j0 is the imaginary 
unit.

The pseudo-spectral scheme achieves the exponential convergence rate 
and remarkably lowers the complexity with coarse grids. The intrinsic weak-
ness of the scheme lies at the Gibbs phenomena occurring at the inhomoge-
neous boundaries, which limits the application of the scheme.

From our personal views, a stable, accurate, fast, and efficient time-domain 
solver for Maxwell’s equations can be proposed based on the following prin-
ciples. First, one can design new methods to approximate the time evolution 
matrix or spatial first-order derivatives. Second, the proposed time-domain 
and space-domain algorithms can be recombined with each other. Third, 
these developed algorithms can be hybridized [33–35] with the finite-element 
time-domain [36], finite-volume time-domain [37] or discontinuous Galerkin 
time-domain methods [38].

2.2 Core Techniques

Nanoscience and technology become more and more important in cutting-
edge industry. The advances in nanoscience and nanotechnology are attrib-
uted to newly acquired abilities to measure, fabricate, and manipulate 
individual structures on the nanometer scale. Controlling the light-matter 
interaction at the nanoscale is of paramount importance for emerging 
nanodevices and quantum devices. Photonics [39,40], plasmonics [41–47], 
and metamaterials [48–55] unprecedentedly change the traditional views 
and tools to control the propagation, radiation, and scattering of electro-
magnetic fields and to some extent break the diffraction limit in optics. 
Characterizing unique features, exploring new functionalities, and optimiz-
ing performances of nanostructures and nanodevices strongly depend on 
the rigorous solution of Maxwell’s equations. As an accurate, fast, and effi-
cient full-wave solver, the FDTD method can help to predict electromagnetic 
responses, understand working principles, reduce experimental costs, and 
shorten development periods of nano-optical designs. On one hand, the ran-
dom, multilayered, and periodic nanostructures of interest have the inho-
mogeneous, dispersive, and anisotropic characteristics, presenting many 
challenges in developing the FDTD method. On the other hand, the large-
scale simulation with broadband and wide-angle excitations requires huge 
computer resources and has to be tackled with the parallel FDTD technique. 
In this section, we will briefly describe core techniques of the FDTD method 
and particularly focus on those for nano-optics applications.
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2.2.1 Basic Update Equations and Material Averaging Technique

Considering homogenous and isotropic media, the basic update equation of 
the FDTD method for the x component of the scaled electric field (E-field) is 
given by
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where εr  is the relative permittivity. Similarly, the update equation for the y 
component of the magnetic field (H-field) is of form

 

+ +⎛
⎝⎜

⎞
⎠⎟ = + +⎛

⎝⎜
⎞
⎠⎟ +

μ + +⎛
⎝⎜

⎞
⎠⎟

×

α × + +⎛
⎝⎜

⎞
⎠⎟ − +⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

−α × + +⎛
⎝⎜

⎞
⎠⎟ − +⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

+ −H i j k H i j k
i j k

E i j k E i j k

E i j k E i j k

y
n

y
n

r

x z
n

z
n

z x
n

x
n

1
2

, ,
1
2

1
2

, ,
1
2

1
1
2

, ,
1
2

ˆ 1, ,
1
2

ˆ , ,
1
2

ˆ 1
2

, , 1 ˆ 1
2

, ,

1/2 1/2

  
  (2.26)

 
α =

μ ε
Δ
Δx

t

x

1

0 0  
(2.27)



46 Computational Nanotechnology Using Finite Difference Time Domain

where μr  is the relative permeability. For the lossy media (take Ex
ˆ  compo-

nent as an example), the iteration equation can be rewritten as
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where
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and σ is the electric conductivity. For the exponential functions, we can 
employ the Padé expansion to access their values, i.e.,
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For inhomogeneous nonmagnetic media, which are always modeled in 
nano-optics problems, the above constitutive parameters can be averaged as
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where S is the surface corresponding to the E-field component enclosed by 
the four H-field components, AS  is the area of S, and εr  and σ  are the aver-
aged relative permittivity and electric conductivity, respectively. The inte-
grals (2.30) can be converted into the summation forms according to the 
subgridding techniques [4,14].



47The FDTD Method

2.2.2 Absorbing Boundary Condition

Because of limited computer resources, an absorbing boundary condition is 
compulsory to truncate the infinite free space (or air region) for simulating the 
optical radiation and scattering from nanoscatterers. The perfectly matched 
layer (PML) [56,57] is able to absorb the outgoing waves without spurious 
reflections and to perfectly simulate unbounded wave propagations.

Using the split-field technique, we decompose the x polarized E-field into 
two subcomponents propagating along the y- and z-directions, respectively.

 = +E E Ex xy xz
ˆ ˆ ˆ

 (2.31)

The update equation of the subcomponent propagating along the y-direc-
tion is written as
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where
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Likewise, the update equation of the subcomponent propagating along the 
z-direction is given by
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where
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To reduce the spurious numerical reflection, the electric conductivity can be 
set as the following polynomial form, i.e.,

 
( )σ Λ = σ Λ

Γ
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⎞
⎠⎟
κ

max

 
(2.34)

where Λ is the distance from the PML-air interface, Γ is the thickness of the 
PMLs, σmax  is the maximum electric conductivity, and κ is the order of the 
polynomial. Besides the Ex

ˆ  component, all the other components should use 
the split-field technique also. To absorb the outgoing waves from different 
directions, the settings of the electric and magnetic conductivities in the PMLs 
are shown in Figure 2.1. Additionally, an easier and more elegant technique 
to implement the PML, called convolution PML (CPML), can be found in [58].

2.2.3 Source Excitations

The typical source excitations in the FDTD solution include the plane wave 
and point (dipole) sources.

A rigorous way of introducing the plane wave excitation is to use the total-
field and scattered-field (TF-SF) technique [2]. We assume that the E-field 
is x-polarized and propagates along the z-direction. The total-field region 
occupies × ×i i j j k k[ , ] [ , ] [ , ]1 2 1 2 1 2 . The additional update equation of Ex

ˆ  field 
at the =k k1 plane is of form
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FIGURE 2.1
The settings of electric and magnetic conductivities in the PMLs.
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At the =k k2  plane, the additional update equation of Ex
ˆ  field is given by
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where ≤ ≤ −i i i 11 2 , ≤ ≤j j j1 2 , and Hy inc,  is the incident H-field. We can 
modify the iterations of Ez

ˆ , Hy, and Hz  components at the TF-SF inter-
faces accordingly through introducing the equivalent incident sources. In 
view of the incident source, the one-dimensional (1D) FDTD method can be 
employed. For example, Ex inc

ˆ
,  can be updated by
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At the =k ks  point, the source ζ t( )  is added as
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with an effective frequency range ∈ ω π − ω π +⎡⎣ ⎤⎦f W W/ 2 2/ , /2 2/  and T0 = 
9π/2ω. Alternatively, the plane wave incidence can be approximately realized 
by exciting a transparent or soft source at a planar surface. One can place the 
planar source along one of the inner PML boundaries (see Figure 2.2). Make 
sure that the size of the source is the same as that of the entire simulation cell 
(including the PML thickness) along its planar dimension. Under this situation, 
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J, M

PML
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xy
PMLy

xy

PML

P
M

L
x

P
M

L
x

xy

FIGURE 2.2
The 2D FDTD configurations involving the perfectly matched layers (PMLs), total-field (TF) 
region, scattered-field (SF) region, planar source plane, and equivalent currents J and M for the 
near-to-far-field (NFF) transformation.
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the entire computational domain becomes the total-field region, and thus there 
is no scattered-field region. The scattered fields can be obtained by extracting 
the incident fields from the total fields by running the FDTD program twice.

The dipole source is essential to predict the emission of atoms, molecules, 
and quantum dots in inhomogeneous environments. It can be used for ana-
lyzing the spontaneous emission [59–62], near-field heat transfer [63–65], 
Casimir force [66–68], solar cells [69], and so on. The electromagnetic radia-
tion of a point source relates to the local density of states (LDOS) concept 
[42], which plays a fundamental role in modern physics. The dipole source is 
implemented as follows:
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where = − π −p A t T Wexp[ 4 (( )/ ) ]0
2  corresponds to the dipole momentum 

and δ = Δ Δ Δx y z
3  is the volume of a Yee cell. In fact, the transparent source 

adopted is the differential Gaussian pulse without the direct current (DC) 
component. The LDOS, which counts the number of electromagnetic modes 
where photons can be emitted at the specific location of the emitter, can be 
calculated by the superposition of the projected LDOS. The projected (per-
polarization) LDOS is exactly proportional to the power radiated by an 
l-oriented point-dipole current ωJ( )  at the given position in space [70]:
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where the normalization of � ωJ| ( )|2 is necessary for obtaining the power 
exerted by a unit-amplitude Hertzian dipole.

The eigenvalue problem is fundamentally important in the nano-optics 
field. On one hand, the excitation solution by the plane wave or dipole 
sources can be expanded in terms of dominant eigenmodes. On the other 
hand, the dispersion diagram or relation generated provides key character-
istics of an electromagnetic system involving the group velocity, quality fac-
tor, and density of states (DOS). To excite all possible resonant modes in the 
electromagnetic system, we set the initial condition for all the E-field compo-
nents, taking the z component as an example [71]:
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where ic , jc , kc  are the center points of the system, τg  is the width of the 
spatial pulse, and i,j,k can be set as >i ic , >j jc , and >k kc . The asymmetric 
setup enables all the eigenmodes to be excited.
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2.2.4 Near-to-Far-Field Transformation

To obtain far-field scattering or radiation information, the near-to-far-field 
(NFF) transformation [2] should be implemented at a closed surface enclos-
ing the scatterers. The E-field and H-field values at the closed surface in the 
frequency domain should be evaluated via the discrete Fourier transform or 
fast Fourier transform before the NFF transformation.

The discrete Fourier transform for the scaled Ex
ˆ  field is described as
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where 
�
Ê  is the scaled E-field in the frequency domain, and nmax  is the 

required time steps before the steady state is reached. The equivalent electric 
current �J  and magnetic current �mĴ  are respectively defined by
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where n is the outer normal vector of the closed surface. With the help of the 
equivalent principle, the E-field in the far-field zone can be calculated by
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where k0  is the wave number of free space, r is the distance from the source 
to the field points, ∫∫ ′dsA  denotes the area integral in the whole closed sur-
face, and θ and φ are the spherical angles.

2.2.5 Periodic Structures

A periodic structure has profound theoretical meanings and practical uses 
in nanoscience and technology. It can be made from dielectrics, metals, and 



52 Computational Nanotechnology Using Finite Difference Time Domain

their hybrids with structured lattices. The periodic structure is crucial for 
optical components and devices, such as nanoantennas [72], nanocircuits 
(waveguides, polarizers, filters) [40, 73–75], and optoelectronics (solar cells, 
light-emitting diodes, and lasers) [45, 76–79]. First, due to the constructive 
and destructive interferences, the period structures could open up a band 
gap where the photon emission is forbidden or inhibited and form a band 
edge where the light intensity is extremely enhanced [39, 40]. Second, the 
group delay of modulated optical signals is also highly tunable in the slow-
wave structure [80,81]. Third, periodic structures could control the emission 
direction of atoms, molecules, and quantum dots by the diffraction effect of 
Floquet modes [82,83]. Finally, the interferences between the quasi-guided 
mode of periodic structures and incident light induce many interesting 
physical phenomena involving the Fano-resonance or Wood’s anomaly [84–
86], electromagnetically induced transparency [87], and so on. In sum, mod-
eling periodic structures and unveiling relevant physical mechanisms have 
a high impact in the nano-optics field. The challenges in the FDTD method 
to model periodic structures can be understood from the Bloch theorem:

 
� �+ = − ⋅j B( ) ( )exp( )0E r R E r k R  (2.49)

 
� �= + ⋅j B( ) ( )exp( )0E r E r R k R  (2.50)

where Bk  is the Bloch wave vector.
In the time domain, (2.49) can be numerically implemented because 
� +( )E r R  has a time delay (or retardation) with respect to � ( )E r . However, the 

anti-causal property can be found in (2.50). The value of � ( )E r  at the cur-
rent time step depends on that of � +( )E r R  at the following time step, which 
is unknown physically. Here we implement periodic boundary conditions 
in the time domain by the constant horizontal wave number approach [88] 
with complex field values. Although the memory cost of the FDTD method 
will double, the phase delay in periodic boundary conditions (PBCs) can be 
incorporated conveniently.

For example, to update Ex
ˆ  field on the periodic boundary, the value of Hz  

component outside the unit cell is needed. Fortunately, assuming the period-
icity in the y-direction, one can use the Hz  component of interest inside the 
unit cell to update the E-field, such that
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where Py and ky are, respectively, the periodicity and Bloch wave number 
along the y-direction. The TF-SF technique is not applicable to implement the 
plane wave source for periodic structures, and the pure total-field technique 
should be employed with a transparent source at the excitation plane, which 
has been described in the “source excitations” subsection. The incident angle 
of the plane wave can be controlled by changing the value of ky. There exists 
a problem of horizontal resonance [88], where fields do not decay to zero over 
time. To avoid this problem, the proper frequency range for the excitation 
waveform must be chosen as follows:

 
=

π
+f

k c BW
c

y

2 2  
(2.52)

where fc  is the center frequency of the Gaussian pulse and BW is the cor-
responding bandwidth. The constant horizontal wave number approach can 
be naturally extended to the skewed grid periodic structures with a simple 
linear interpolation [88].

2.2.6 Dispersive Media

In the nano-optics field, most materials are dispersive with a frequency-
dependent complex permittivity. Debye, Lorentz, and Drude media are three 
main classes of dispersive materials and have different frequency-dependent 
behaviors. Various techniques have been developed to model these disper-
sive materials, such as the recursive convolution (RC) [89], the auxiliary dif-
ferential equation (ADE) [90], piecewise linear recursive convolution [91], and 
the Z-transform methods [92]. Mathematically, we can use several Lorentz 
terms with different harmonic resonances to represent the permittivity of an 
arbitrary dispersive material, i.e.,
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where the first term is the instantaneous dielectric function corresponding 
to the infinite-frequency response and the Lorentz terms are related to the 
frequency-dependent polarization density in the material
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For a practical curve fitting process, we must force ω Δ ≤tn /2 1  to ensure the 
stability of the algorithm and βn  also cannot be too large.

The Ampere’s law in the time domain can be expressed as
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where pJ  are the polarization currents satisfying
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Using the ADE technique, we discretize the differential equation (2.58) with 
centered differences
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From the ADE, we can obtain the polarization current pJ  at the +n( 1)th  
time step by those at the nth and (n – 1)th. Considering that we require the 
polarization current at the (n + 1/2)th time step from (2.57), a simple linear 
interpolation can be adopted:
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Substituting (2.59) and (2.60) into (2.57), we can get the update equation of 
E-field components. Starting with the known (stored) component values of 

−n 1E , nE , −
p
n 1J , p

nJ  and +n 1/2H , we calculate the new +n 1E  components. Then, we 
get the new +

p
n 1J  components by using the just-computed +n 1E  components.

2.3 Numerical Examples for Nano-Optics Applications

Having unique features of tunable resonance and unprecedented near-field 
concentration, plasmon is an enabling technique for light manipulation and 
management [41–47]. By altering the metallic nanostructure, the proper-
ties of plasmons, in particular their interactions with light, can be tailored, 
which offers the potential for developing emerging optical components and 
devices. Meanwhile, the use of metallic materials with a negative permittiv-
ity is one of the most feasible ways of circumventing the fundamental (half-
wavelength) limit and achieving localization of electromagnetic energy (at 
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optical frequencies) into nanoscale. In this section, we will investigate and 
explore plasmonic effects in various nano-optics applications.

2.3.1 Thin-Film Solar Cells

Solar cells [93,94], which can provide renewable and clean energy by con-
verting the sunlight to electrical power, have attracted much attention in 
the past few years. Despite the growing importance, we need to reduce the 
cost of solar cells and increase the power conversion efficiency (PCE) before 
they can successfully replace fossil fuels for electrical power generation. A 
light-trapping scheme can realize the above two goals simultaneously and 
thus is useful for emerging solar cell technology meeting clean energy 
demands. As an efficient light-trapping technique [45], surface plasmons are 
collective oscillations of free electrons in metals that are confined to the sur-
face between the metal and dielectric and interact strongly with light. The 
extremely near-field enhancement inherent from surface plasmons allows us 
to significantly improve the optical absorption of thin-film solar cells.

Here, we use the FDTD method to simulate a typical thin-film solar cell 
nanostructure in the literature [78]. Figure 2.3 shows the unit cell of the plas-
monic thin-film solar cell. The incident wave is a p-polarized plane wave 
propagating vertically into the plasmonic solar cell. The ADE technique and 
Lorenz models are adopted for simulating the dispersive materials involv-
ing the absorbing material (amorphous silicon, A-Si) and metal (Au). The 
frequency-domain values of E-fields are obtained by the discrete (fast) Fourier 
transform. The real and imaginary parts of permittivities for the A-Si and Au 
are depicted in Figure 2.4. The complex permittivity of Au can be expressed 
by the Brendel-Bormann model [95] and that of A-Si is taken from [96]. The 
relative permittivities of ITO and SiO2 are 4.0 and 2.1, respectively.

The electron-hole pair generation of solar cells depends on the photon 
energy absorbed by the absorbing material per unit time per unit area, i.e.,
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where η is the power density, S denotes the region of the absorbing mate-
rial, ΔS  is the area of S, and σ ω = −ωε ε ωr( ) Im[ ( )]0  is the conductivity of the 
absorbing material. Figure 2.6 shows the absorbed power density of the A-Si 
layer. Using the planar Au layer, the non-strip (planar) structure is also mod-
eled. For the non-strip structure, =d 1402  nm is adopted for achieving the 
same A-Si area while other parameters are unchanged. The momentum of 
surface plasmons [41] is given by

 
= ε ε

ε + ε
k ksp

m a

m a
0

 
(2.62)
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FIGURE 2.3
The unit cell of the plasmonic thin-film solar cell. The four-layered structure includes the 
indium tin oxide (ITO), active layer (absorbing material of amorphous silicon), metal (Au) elec-
trodes, and substrate (SiO2) with thicknesses of d1, d2, d3, and d4, respectively. The distance 
between two adjacent strips is w and the periodicity is P. The incident light propagates into 
the structure through the ITO. The PMLs are employed at the top and the bottom of the solar 
cell structure. The PBCs at the left and right sides of the unit cell are imposed. The geomet-
ric parameters of the device are set as =d 251  nm, =d 1202  nm, =d 403  nm, =d 304  nm, 
w = 100 nm, and P = 200 nm.
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where εm  and εa  are the permittivities of metal and absorbing material, 
respectively. It is well known that surface plasmons will exist if the condi-
tion −ε > εm aRe( ) Re( )  is satisfied. Thus the momentum of surface plasmons 
ksp is larger than free space momentum k0  of the plane wave (sunlight). 
Hence, additional momentum should be provided for exciting the surface 
plasmon. From Figure 2.6, the periodic strip incorporated solar cell shows 
much stronger absorption due to the excited surface plasmons. However, 
for the non-strip structure, the surface plasmons cannot be excited due to 
the momentum mismatch. The reflection coefficient results as presented in 
Figure 2.5 not only validate the FDTD results but also confirm the strong 
optical absorption of A-Si from 660 to 800 nm. The surface plasmon is suc-
cessfully excited by the nanostrip as shown in Figure 2.7(b) in comparison 
with Figure 2.7(d). According to the mode conversion theory, the subwave-
length strip can excite evanescent wave components, which may provide 
additional momentum. Furthermore, the Floquet modes supported by the 
periodic strip structure can also overcome the momentum mismatch prob-
lem. The waveguide mode also enhances the optical absorption of solar cells 
as illustrated in Figures 2.7(a) and (c). Particularly, the surface plasmon mode 
can be coupled to the waveguide mode or Floquet mode, which has a great 
help for boosting the absorption (Figure 2.7[b]).
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The reflection coefficients of the strip and non-strip solar cell architectures calculated by the 
FDTD method and rigorous coupled-wave analysis (RCWA) [97]. The pattern of the strip struc-
ture is shown in Figure 2.3. By using the planar Au layer, the non-strip structure has the same 
geometric size as the strip one except that =d 1402  nm is adopted for achieving the same A-Si 
area.
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(a) 570 nm: Arrow 1 (b) 720 nm: Arrow 2

(c) 600 nm: Arrow 3 (d) 720 nm: Arrow 4 
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The near-field distributions for the absorption peaks of A-Si material denoted in Figure 2.6. 
(See color figure.)
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2.3.2 Nanoantennas

Nanoantennas [72, 75, 98–103] play a fundamental role in nanotechnology 
due to their capabilities to confine and enhance the light through convert-
ing the localized to propagating electromagnetic fields, and vice versa. The 
nanoantenna is a direct analogue and extended technology of the radio wave 
and microwave antenna. But the nanoantenna possesses lots of individual 
and novel features mainly owing to the existence of the electron gas oscilla-
tions in metals. The behavior of strongly coupled plasmas and the capability 
of manipulating light on the nanometer scale make nanoantenna particu-
larly useful in microscopy and spectroscopy [104], fluorescence enhance-
ment [101], surface-enhanced Raman spectroscopy [105], and photovoltaics 
[106,107]. The above applications mainly rely on the characteristics of nano-
antennas, such as the resonance frequency, bandwidth, directivity, far-field 
radiation pattern, near-field distribution, and local density of states. Here, 
we use the FDTD method to simulate a typical dipole nanoantenna with the 
schematic pattern shown in Figure 2.8. The relative permittivity of Al2O3 is 
3.065 and the excitation source is a plane wave polarized along the arm direc-
tion of the antenna. Figure 2.9 demonstrates that the resonance frequency of 
the antenna can be tunable in a wide range by changing the arm length of 
the antenna. The absorption cross section can be defined by
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where conj denotes the complex conjugation, S is an arbitrary surface enclos-
ing the nanoantenna, and � �= ×i i iRe[ conj( )]1

2S E H  is the incident energy flux. 
The radar cross sections—i.e., radiation patterns from the reciprocal theo-
rem—at the resonance and off the resonance of the antenna are shown in 
Figure  2.10. Both the absorption cross section and radar cross section are 

Al2O3
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Au Au

3w

w
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Light

FIGURE 2.8
The schematic pattern of the metallic (Au) dipole nanoantenna with the Al2O3 as a substrate. 
The geometric size of the antenna is l = 60 nm, w = 40 nm, h = 40 nm, and Gap = 20 nm.
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normalized with the geometric cross section area of the metallic dipole 
antenna (2 × l × w). At the resonance frequency, the radiation pattern of the 
dipole antenna is shaped like the well-known cosine square law, which is dif-
ferent from an asymmetric radiation pattern off the resonance. Moreover, the 
concentrated E-fields at the gap of the nanoantenna can be clearly observed 
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in Figure 2.11. The amplitude of the E-field at the resonance is significantly 
larger than that off the resonance (see colorbar).

2.3.3 Spontaneous Emissions

Control of spontaneously emitted light lies at the heart of quantum optics. It 
is also essential for diverse applications ranging from lasers, light-emitting 
diodes, and quantum information [59–62, 108]. It is well known that the radi-
ation dynamics of an atom strongly depends on its environment, which was 
first discovered by Purcell [109], and the spontaneous emission (SE) can be 
enhanced if the emitting atom is coupled to a cavity resonator. According to 
the quantum electrodynamics theory, the SE of an atom can be a weak-cou-
pling radiation process due to the vacuum fluctuations of electromagnetic 
fields. A suitable modification of inhomogeneous environment is required 
so that the vacuum fluctuations controlling the SE can be manipulated. 
Inhibiting unwanted SEs and boosting desired ones will promote the novel 
optoelectronic designs tailored to industrial standards. The local density of 
states (LDOS) [42] counts the number of electromagnetic modes where pho-
tons can be emitted at the specific location of the emitter, and can be inter-
preted as the density of vacuum fluctuations. The inhibition or enhancement 
of SE boils down to how the LDOS of photons is controlled. The SE rate is 
also proportional to the LDOS. Regarding laser and light-emitting diode 
applications, enhancing SE enables the improved photoluminescence, low 
threshold current, and fast turn-on time. Meanwhile, SE can be redirected 
with a high directionality in the Yagi-Uda nanoantenna system, which is 
quite useful in the molecular detection and sensing [103]. As an efficient tool 
to control the SE, plasmonic effects are successfully explored to design vari-
ous optical elements and devices for enhancing and redirecting the emission 
[82, 83]. Here, we employ the FDTD method to investigate the LDOS or SE in 
a hybrid plasmonic system [108] as plotted in Figure 2.12. The LDOS can be 
calculated by using (2.41). The localized plasmon from the nanosphere will 
strongly interact with the surface plasmon from the plate substrate result-
ing in a strong confinement and large spontaneous decay rate. Particularly, 
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The near-field distributions of the antenna respectively at the resonance (680 nm) and off the 
resonance (480 nm). (See color figure.)
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constructive or coherent interferences by the evanescent wave coupling in 
the case of z-polarized dipole make the normalized SE rate of the hybrid 
system stronger than the summation of those of the single nanosphere and 
the single substrate (Figure 2.13). Figures 2.14(a) and (b) show the scattered 
near-field distributions for the hybrid plasmonic system and single metal-
lic nanosphere, respectively. The two hot spots at the opposite edges of the 
sphere and plate can be seen clearly in Figure 2.14(a).

2.3.4 Metamaterials

Artificially engineered metamaterials (MMs) have attracted much atten-
tion due to their interesting properties not attainable in naturally occurring 
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FIGURE 2.12
A schematic pattern for the SE in a hybrid plasmonic system. A gold sphere is located above 
the square gold substrate excited by the z-polarized dipole, where r = 20 nm, d = 20 nm, h = 
30 nm, and w = 100 nm.
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materials, such as negative refraction, cloaking, and electromagnetically 
induced transparency [48–55]. Since MMs have a subwavelength scale, effec-
tive material parameters (EMPs) (involving permittivity/permeability or 
refractive index/impedance) [110] can be retrieved by a homogenization pro-
cedure to significantly simplify the description of MM properties. Here, the 
EMPs are obtained with the recently developed non-asymptotic homogeni-
zation theory [111,112], where the electromagnetic field is approximated with 
a suitably chosen set of basis functions (modes).

The EMPs, which can be generally represented by a 6×6 matrix, are used 
to describe the linear constitutive relationship of the four coarse-grained 
(macroscopic) electromagnetic (EM) fields � � � �, , ,E H D B  in the frequency 
domain, i.e.,
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(2.64)

The EMPs can be retrieved by inverting (2.64) with a sufficient basis set of mac-
roscopic EM fields. In view of periodic structures, the macroscopic EM fields 
� � � �, , ,E H D B  can be obtained by averaging the microscopic ones � � � �e, h,d, b with 
the line and area integrals along the edge and surface of the unit cell of the 
periodic structure, respectively. Here, the FDTD method is adopted to obtain 
the microscopic EM fields with different excitations as basis functions [113].

An array of spherical gold particles with the radius of 20 nm in a cubic 
unit cell with the size of 80 nm is analyzed (see Figure 2.16[a]). The number 
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of lattice layers is five. The basis functions are constructed by illuminat-
ing the structure with incident waves at varying angles. PMLs are used as 
absorbing boundaries at the top and bottom (z-direction) of the MM slab, 
while PBCs are applied in the x- and y-directions. For a broadband simula-
tion with a Gaussian pulse excitation, the constant horizontal wave num-
ber approach described in Section 2.2 is adopted especially for handling the 
oblique incidence case. Figure 2.15 displays the calculated EMPs compared 
to the Lewin’s theory results [114]. Figure 2.16(b) illustrates the reflection (R) 
and transmission (T) coefficients used to check the validity of the EMPs. We 
compare the T/R coefficients calculated from the real model simulation and 
those calculated by an equivalent slab with the EMPs. From Figure 2.16(b), 
the EMPs by the homogenization from FDFD solutions are more accurate 
than those obtained from the Lewin’s theory.

2.4 Extended to a Time-Dependent Schrödinger Equation

For conventional devices, the applied or built-in potentials vary slowly in com-
parison to the crystal potential, so that wave phenomena such as reflections 
and tunneling are absent, and therefore the electron motion can be described 
by classical physics. The classical approach will break down in ultra-small 
devices. Because most ultra-small devices contain quantum wells, the carriers 
within such wells clearly display their wave nature. Quantum confinements 
alter the wave function of electrons confined in potential wells, but the trans-
port outside the confined region can often be described semiclassically. As 
a result, wave phenomena in ultra-small quantum devices, governed by the 
Schrödinger equation, strongly affect the device performances.

The time-dependent Schrödinger equation is given by [115]
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(2.65)

where ψ is the wave function that is a probability amplitude in quan-
tum mechanics describing the quantum state of a particle at the position 
r and time t, ∗m  is the (effective) mass of the particle, �− ∇∗m( /2 )2 2  is the 
kinetic energy operator, V(r)  is the time-independent potential energy, and 
�− ∇ +∗m V( /2 )2 2  is the Hamiltonian operator.
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To avoid using complex numbers, one can separate the variable ψ r t( , )  into 
its real and imaginary parts as

 ψ = ψ + ψr t r t i r tR I( , ) ( , ) ( , )  (2.66)

Inserting (2.66) into (2.65), we get the following coupled set of equations 
[116,117]:
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A mesh is defined as a discrete set of grid points that sample the wave 
function in space and time. The discretized real and imaginary parts of the 
wave function can be represented as

 ψ ≈ ψ = ψ Δ Δ Δ Δt i j k i j k nR R
n

R x y z t( , ) ( , , ) ( , , , )r  (2.69)

 ψ ≈ ψ = ψ Δ Δ Δ Δt i j k i j k nI I
n

I x y z t( , ) ( , , ) ( , , , )r  (2.70)

where Δx , Δy , and Δz  are, respectively, the space steps in the x-, y-, and 
z-directions, Δt  is the time step, and i, j, k, and n are integers. The first-order 
time derivatives can be discretized by a second-order centered difference 
scheme. The second-order Laplace operator in (2.67) and (2.68) is discretized 
by using the second-order collocated difference, which distinguishes from 
the Yee (staggered) cell in the FDTD method for Maxwell’s equations [1]. 
Accordingly, the update equations of the real and imaginary parts of the 
wave function are of the forms
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To absorb the outgoing waves, the stretched coordinate PML [118,119] is 
adopted. By using the case of a 1D Schrödinger equation, we have
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where σ = −x x xr( ) 0.005( )2  is the parameter that is stretched as it approaches 
the edge of the problem space and = πR ei /4 .

According to the von Neumann stability analysis, the solution of the wave 
function can be represented as a superposition of plane waves

 ψ = ψ Δ Δ Δ = − Δ + Δ + Δx y z i j k A j i k j k k kx y z x x y y z z( , , ) ( , , ) exp( ( ))0 0

 = θ ϕ = θ ϕ = θk k k k k kx y zsin cos , sin sin , cos0 0 0  (2.74)

where �=k px m/  is the wave number, pm  is the momentum, and θ and φ 
are the spherical angles. The second-order collocated differences are used to 
discretize the second-order spatial derivatives, i.e.,
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For simplicity, we consider a 1D Schrödinger equation with zero poten-
tial energy
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and corresponding spatial discretization form is given by
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It is trivial to access the discretized evolution matrix Ld with the second-
order staggered time-stepping method
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where m = 2, = =c c 0.51 2 , =d 11 , and =d 02 .
The eigenvalues λ of the discretized evolution matrix satisfy the following 

eigen-equation

 λ − λ + =tr L Ld d( ) det( ) 02

 (2.79)

where tr Ld( )  and Lddet( )  are the trace and determinant of the evolution 
matrix, respectively. Considering that the determinant of the discretized 
evolution matrix is 1, the eigen-equation can be simplified as

 λ − λ + =tr Ld( ) 1 02

 (2.80)

and its solutions are
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A stable algorithm requires λ =| | 11,2 , and thus ≤tr Ld| ( )| 2. Through terms of 
matrix multiplications, we have
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The above results can be generalized to a three-dimensional (3D) 
Schrödinger equation with zero potential energy, i.e.,
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Finally, we can get
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where =CFL d1/  is the Courant-Friedrichs-Levy (CFL) number and d = 
1,2,3 is the dimension number.

The dispersion relation of free space photon described by Maxwell’s equa-
tions is

 ω = c 0k  (2.85)

where c is the speed of light and = k k kx y z( , , )0k  is the wave vector with the 
amplitude of k0. Critically different from free space photon with the cone-
shaped dispersion relation, the dispersion relation of free electron is a parab-
oloid, i.e.,
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(2.86)

We can define a dummy velocity of the Schrödinger equation as �= ∗v m( /2 )0 , 
analogous to Maxwell’s equations, so (2.86) can be rewritten as

 ω = v0 0
2k  (2.87)

Due to the energy-conserving property of the second-order staggered time-
stepping method, the dispersion relation of free electron can be written as
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The relative error of phase velocity is given by

 
η=

−v v
v

p 0

0  
(2.89)

where = ωv kp / 0
2 , and ω can be obtained by (2.88). The above analyses for the 

numerical stability and dispersion can be extended to the high-order quan-
tum FDTD approaches [120].
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We set the stability criterion to be
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Figure 2.17 shows the relative phase velocity error as a function of points per 
wavelength (PPW) for a plane wave traveling at θ = 0° and φ = 0°. Next, the 
spatial resolution is set to be 7 points per wavelength. We redraw the relative 
error at θ = 30° versus the propagating angle φ as shown in Figure 2.18.

131211109876
1

2

3

4

5

6

7

8

9

10

Points per Wavelength

R
el

at
iv

e 
P

h
as

e 
V

el
o

ci
ty

 E
rr

o
r 

(%
)

FIGURE 2.17
The relative dispersion error as a function of the spatial resolution (points per wavelength). 
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2.5 Numerical Examples for Quantum Physics

2.5.1 1D Propagation Problem

We consider a simulation of a particle interacting with a barrier of 0.1 eV. The 
spatial step is Δ =δ 0.1 nm and
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2
0.12

The simulation domain occupies 400 grids. Figure 2.19 shows the propagation 
of the particle near the barrier with the initial wave function of a modulated 
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FIGURE 2.19 
A particle is initiated in free space and strikes a barrier with a potential of 0.1 eV. The time 
evolutions of the wave function are recorded. (Continued)
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Gaussian pulse. After 40 fs, the particle reaches the barrier. After 90 fs, the 
wave function is reflected back and meanwhile penetrated into the barrier.

2.5.2 Two-Dimensional Eigenvalue Problem

The eigenvalue problem of the Schrödinger equation is fundamentally 
important for the quantum transport and nanodevice modeling. The ballis-
tic electron transport strongly depends on the transverse eigenstates of the 
conducting channel [121]. Various intriguing quantum phenomena for the 
microscopic electron transport, such as the resonant tunneling effect [115], 
Fano-resonance [122], and so on, contribute to the excitation of eigenstates 
or interplay of different eigenstates. Thus, an accurate and efficient method 
to calculate the eigenstates and eigenfrequencies is crucial to understand 
the fundamental and device physics. Moreover, eigenstates and eigenfre-
quencies extraction tailored to industrial requirements is also indispens-
able in the quantum computer-aided design (CAD). One of the commonly 
adopted algorithms to solve the eigenvalue problem of the time-dependent 
Schrödinger equation is the FDTD method [116,117]. Here we investigate 
the eigenvalue problem of a particle in a two-dimensional (2D) quantum 
well with the area of 40 × 30 nm2. The spatial steps are set to Δ = Δ =x y 1  
nm, and
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A particle is initiated in free space and strikes a barrier with a potential of 0.1 eV. The time 
evolutions of the wave function are recorded. 
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The simulation time step is set to 200,000 to force all the eigenstates com-
pletely excited. The initial value of the wave function is taken as (2.42). 
Figure 2.20 shows the amplitude-frequency spectrum at an arbitrary point 
of the quantum well from 0 to 0.7 THz calculated by the quantum FDTD 
method and discrete (fast) Fourier transform. Table 2.1 lists the eigenfre-
quencies related to the amplitude peaks in Figure  2.20. The calculated 
eigenfrequencies by the quantum FDTD method agree with the analytical 
solutions well. The eigenstate corresponding to one of the eigenfrequencies 
is illustrated in Figure 2.21.
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FIGURE 2.20
The eigenfrequencies of a 2D quantum well calculated by the quantum FDTD method and 
discrete (fast) Fourier transform.

TABLE 2.1

Comparisons of Eigenfrequencies of a 2D Quantum 
Well between the FDTD Method and the Analytical 
Solution

Eigenfrequencies
Numerical 

(THz)
Analytical 

(THz)

f11 0.161 0.158
f21 0.335 0.328
f12 0.469 0.461
f31 0.623 0.613
f22 0.642 0.631

Note: The analytical solution is

�= π +
⎛
⎝⎜

⎞
⎠⎟∗f

m
p
a

q
b4

,pq

2

2

2

2

where p,q are integers, and a and b are the length and 
width of the well.
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2.6 Conclusion

The FDTD method and its advances tremendously promote the development 
of the computational electromagnetics field and play more and more funda-
mental roles in nanotechnology applications. Due to the features of extreme 
flexibility and easy implementation, the FDTD method is an indispensable 
tool in modeling inhomogeneous, anisotropic, and dispersive media with 
random, multilayered, and periodic fundamental (or device) nanostructures. 
Regarding future possible research directions, the FDTD method is expected 
to be widely adopted to simulate multiphysics problems, through which the 
optical, electrical, thermal, mechanical, and quantum properties of multi-
functional components and devices can be investigated. Based on authors’ 
knowledge, some interesting and hot topics for the multiphysics simulation 
are summarized as follows:

 1. Nonlinear optics problem, such as the second harmonic generation, 
Kerr effect, and four-wave mixing [123]. The Maxwell’s equations 
and hydrodynamic equation can be solved self-consistently [124].

 2. Optoelectronic device simulation for light-emitting diodes, photo-
detectors, solar cells, and lasers. The Maxwell’s equations, semi-
conductor equations (Poisson, drift-diffusion, continuity, heat 
conduction, and energy balance equations), and thermal stress field 
equations will be coupled with each other [125–127]. The Maxwell’s 
equations also could be interacted with the rate equations [128,129].
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FIGURE 2.21
The eigenstate corresponding to the eigenfrequency f22 for a 2D quantum well obtained by the 
quantum FDTD method and discrete Fourier transform. (See color figure.)
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 3. Quantum optics and quantum transport problems. The self-consis-
tent solutions to Maxwell’s equations and effective-mass Schrödinger 
equation, von Neumann equation, or density functional theory 
method are required [130,131].

Exploring start-of-the-art techniques and emerging applications for the 
FDTD method will open up a fantastic, fruitful, and challenging research 
area in the near future. Are you ready?
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