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The Numerical Steepest Descent Path Method for
Calculating Physical Optics Integrals on Smooth
Conducting Quadratic Surfaces
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Abstract—In this paper, we use the numerical steepest descent
path (NSDP) method to analyze the highly oscillatory physical op-
tics (PO) integral on smooth conducting parabolic surfaces, in-
cluding both monostatic and bistatic cases. Quadratic variations
of the amplitude and phase functions are used to approximate the
integrand of PO integral. Then the surface PO integral is reduced
into several highly oscillatory line integrals. By invoking the NSDP
method, these highly oscillatory PO line integrals are defined on
the corresponding NSDPs. Furthermore, the critical point contri-
butions for the PO integral are exactly extracted and represented
based on the NSDPs. The proposed NSDP method for calculating
the PO integral on the smooth conducting surfaces is frequency-in-
dependent and error-controllable. Compared with the traditional
asymptotic expansion approach, the NSDP method significantly
improves the PO integral accuracy by around two digits when the
working wave frequencies are not extremely large. Numerical re-
sults are given to validate the NSDP method.

Index Terms—Contribution points, highly oscillatory integral,
numerical steepest descent path, physical optics (PO).

I. INTRODUCTION

N computational electromagnetics (CEM) community,

analysis of the scattered electromagnetic (EM) fields by
the electrically large perfect conducting object [1], [3]-[5]
is an important and challenging problem. As we know, the
method of moments (MOM) [2] provides a traditional full
wave approach to calculate the scattered EM fields. However,
the computational effort increases as fast as O(N?), and the
number of discretized meshes for the considered object NV
is proportional to the square of the product of the working
frequency £ and the size of the object d. When the electrical
size of the considered objects is on the order of tens to hundreds
of the working wavelength A, that is, kd is large enough, the
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physical optics (PO) approximation [6]-[9] is served as an
efficient approach for analyzing the scattered EM fields. Early
in 1913, Macdonald [7] introduced the PO approximation
concept by approximating the induced current on the surface of
the simulated object. The surface PO induced current [6]-[9] is
approximated by doing the local tangent plane approximation,
that is, the integration small surface patch d.S along the elec-
trically large object is assumed to be locally flat and smooth
under the external high frequency condition. In this sense, for
the incident high frequency EM waves on the electrically large
real-world objects, the PO approximation [7]-[18] has revealed
itself as an efficient way to calculate the scattered field.

The scattered field generated by the surface PO induced cur-
rent can be described as a highly oscillatory surface integral [1],
[17]. The traditional method for calculating the PO type integral,
such as the Gaussian quadrature rule [33], causes the computa-
tional effort to increase vastly as the working frequency £ goes
high. Hence, the challenge on developing efficient numerical
methods to calculate the PO integral has attracted great inter-
ests from both engineers and mathematicians in the past sev-
eral decades [10]-[32]. The traditional asymptotic expansion
approximation (ASP) [1], [17] for analyzing the highly oscilla-
tory PO integral offers a frequency-independent approach. The
surface PO integrals on the considered objects are split into the
contributions of critical points, including the stationary phase
points (SPPs), the boundary resonance, and vertex points. Also,
analysis of the critical point contributions by the ASP method
[17] provides the physical insights on the high frequency wave
propagation. However, the ASP method usually produces the
PO integral results with limited accuracy, especially when the
working frequency % is not large enough. Also, mathematicians
have extensively studied the challenging PO type oscillatory in-
tegrals [22]-[27]. By making use of the ASP, efficient Filon-
type and Levin-type numerical quadratures [25] are developed.
Meanwhile, mathematical error analysis on these PO type oscil-
latory integrals was studied in [22], [25].

The integrand of the highly oscillatory PO type integral in-
cludes the slowly varying amplitude part, and the highly oscil-
latory part—the exponent of the phase function. Hence, approx-
imation of the PO integrand provides a possible way to derive
the closed-form formulas for the PO type integral. In [11], the
PO integral on the biquadratic surface with quadratic phase was
considered. Then, the closed-form formula for the PO kernel
on one-parameter curve exist, while a closed-form solution to
this PO kernel on the two-parameters surface does not exist. In
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this manner, a quadrature technique for evaluating PO scattering
was developed in terms of an extension of the so-called Filon
quadrature. Based on the assumption that the amplitude and
phase functions vary linearly, the surface PO type integral can
be analytically simplified into several line integrals [28]-[30].
Then the closed form formulas were derived on the flat polygon
patches. However, the linear function used to approximate the
phase term in the PO integrand cannot capture the SPP and res-
onance points contributions of the PO integral. In this sense,
the quadratic approximation of the phase terms in the PO inte-
grand was discussed in [17]-[21], [31], [32], and [36]. In [17]
and [18], when the PO integrand has a quadratic phase, an exact
closed form formula is derived. And when the general type PO
integrand is considered, the asymptotic evaluation is proposed
without any approximation for the amplitude and phase func-
tions. Closed-form formula in terms of the special generalized
Fresnel and UTD transition functions is proposed. In [3], [32],
[36], [37], the steepest descent path deformation technique in
the complex plane is adopted to handle this type of highly os-
cillatory PO integrals on the NSDPs.

The paper is organized as follows. First, we derive the PO
scattered field on smooth conducting surfaces. The amplitude
and phase functions of the PO integrand are approximated by
quadratic functions. Then, the affine transformations are used
to simplify the PO integral to its canonical forms on each trian-
gular patch. Next, this PO double integral is reduced into sev-
eral highly oscillatory line integrals, and the NSDP method is
employed to rewrite these PO integrals on the corresponding
NSDPs. After that, through combining the PO integral on each
triangular patch, the PO scattered field is expressed on the as-
sembled triangular patches. Finally, numerical examples on the
parabolic patch are given to verify the proposed NSDP method.

II. PO SURFACE INTEGRAL FORMULATION

When a perfect conducting object is excited by an external
source, the electromagnetic (EM) scattered fields can be ex-
pressed by the Stratton-Chu integral formulas [4]. For the obser-
vation point far away from the considered object, the far scat-
tered electric field is expressed as

ik Zper ' !

Ll R SVF Y / dS(r') [A(r') x H(r')] e T
drr a0

6]

where 912 is the boundary of the object, & is the wave number
outside 2, w is the angular frequency, r is the observation point
with the amplitude » and unit vector ¥, ¢’ is the surface point
on 9, n(r’) is the outward unit normal vector of 92, Z; is
the free space intrinsic impedance constant. EM fields are time
harmonic with the time dependence e =%,

When the working frequency % of the wave field is high
enough, the surface induced PO current [6], [8] on the surface
of the object is approximated by

20(r') x HO(r'), ' € oy
J(') = ’
() { 0, v € 90

E(r) ~

2)

where 9€2; and 0€2; are the lit and shadow regions of €2,
respectively. For notation simplification, in the following, we
still use 92 to represent the lit region of the considered object.
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H® (r') is the incident magnetic field on d52. In particular, we

choose the plane incident wave

(%) x E(()i) i
Zy /

Then, after substituting (2) and (3) into (1), the far scattered
electric field can be represented by a surface integral [36]

EQ(r) = Eéi)e'ikf(i)'r, HO(r) = )

E (r)~ / dS(r’)sbi(r')eik“b‘(r/) 4)
L)
with
gy ike'®" N NO) (%)
spi(r’) = Sy T X T X (n(r ) x ' x Eg ) (5)
(') = (f'(i’) — f‘) r (6)

The equation above is the bistatic scattered electric field under
the PO approximation, which is called the PO integral. E((]Z') in
(3) is the incident electric polarization wave vector. In (5) and
(6), spi(r’) is the vector amplitude function which is usually
slowly varying when the surface of the object is smooth. The
exponential of the phase function term, e**vi "), will become
highly oscillatory as the working frequency % increases.

In particular, for the monostatic case with & = —#®  the PO
surface integral in (4) can be represented as [36]

E.(r) ~ E{ Inono )
with
Tono = / A8 () Srmone (1) KEmono 8) )
oN )
1) =~ B B0, ) =20 1 )

2rr

Compared (9) with (5), the amplitude function now is simpli-
fied into a scalar function $,,ene(r’). Furthermore, from (4),
(7), Es(r) under the PO approximation for both the bistatic and
monostatic cases takes the general form

I= / dS(r’)s(r’)eik”(rl). (10)

J o0

Here, the amplitude and phase terms are denoted as s(r’) and
v(r’), respectively.

III. MOTIVATION OF THE PO FORMULATION

In (10), we see that the PO kernel contains the amplitude and
phase function terms. If the amplitude and phase functions are
linearly varying, then the PO integral defined on the flat polygon
patches can be solved in closed form [28], [29]. However, the
PO kernel with linear phase term cannot yield the contributions
of stationary phase points, and resonance points in physics.

In this work, we propose the PO integrand with quadratic
phase to capture the contributions of critical points. The cor-
responding geometry surface d€2 in (10) is the quadratic patch.
Then, the PO integrand exactly takes the form of quadratic vari-
ations of the amplitude and phase functions. Since an arbitrary
curved surface can be discretized into a number of quadratic tri-
angles, the geometry errors shall be much smaller than those
generated by the same number of flat triangular patches. Hence,



WU et al.: THE NSDP METHOD FOR CALCULATING PO INTEGRALS ON SMOOTH CONDUCTING QUADRATIC SURFACES

this natural extension shall be an important application for the
proposed method used on the real-world objects. For the highly
oscillatory PO integral with quadratic variations of both the
amplitude and phase terms, we propose an efficient numerical
steepest descent path method to evaluate it. Specifically, the
workload for the PO surface integral defined on the quadratic
patch is independent of wave frequency. In the following, we
discuss the proposed algorithm procedure in detail.

IV. THE QUADRATIC POLYNOMIAL APPROXIMATION OF THE
AMPLITUDE AND PHASE FUNCTIONS

We assume that the surface of the object OX2 is governed by
equation z = f(,y), and its projection onto the = — ¥ plane is
082, Then we use M triangular patches to discretize the do-
main d{),,, thatis, A1, Ag, - -+, Aps. To capture the stationary
phase and resonance points of the PO integrand in (10), we
approximate the amplitude and phase functions by the second
order polynomials on these triangular patches. Hence, the PO
integral I in (10) can be expressed as

I= / 3, y)e TV (z, y)drdy
99,

= Z/ I(x, y)e‘k”(*"”)rlxdy

n=1
M

Nz/

n=1

(z,y)e ”‘”“(I W dydy (11)

where
5(*Ty) =35 (217:@/, f(Tvy)) ; f)(fmy) =v (oryf('r,y))

9 =1+ Uala ) + Uy ()
d(z,y) = &z, y)t(z,y).

Here, the number of triangles A in (11) depends on the elec-
trical size of the considered object, the wave frequency of in-
terest, and also the curvature radii of the surface of the object.
The second order polynomials d,, (z,y) and ¥, (x, y) in (11) are
the approximated amplitude and phase functions. They can be
obtained by the Lagrange interpolation polynomial approxima-
tion [33] of d(, ) and &(z, y) on these triangular patches A,,,

n =1,2,-.-, M. Their formulas are
'E'n.(«'L'a y) = Bn,l + ,@n,ZfL' + /§n5y + Bn,4fﬂ2 + ,én,5y2
+ Busmy, (12)
djn(g;y y) = dn;l + &n,Q-T + 6577,,3,7/ + d’n,-’la;:) + 6571,,52/2
+ 6Ty (13)
with coefficients Bn,m €C,énm€R,m=1,2---,6. How-

ever, for the quadratic patch, the surface z = f(x,y) is gov-
erned by a second order polynomial. Then, the corresponding
o(x,y) and d(x, y) in (11) are exact and can be rigorously de-
rived as the quadratic polynomials.

Furthermore, after some affine transformations, the quadratic
phase function 7, (2, ) in each summation integral term in (11)
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has the simplified canonical form. In this manner, each summa-
tion integral term in (11) can be reformulated to

In = / ]371(:I;/v?/,)Gik[i(ml)gi(y’)z]dl’ld?/,

n

(14)

P2’ y) = dy (x(2 ) etk

1) 7/( Qn| (15)

is also a second order polynomial in the 2’ — %’ coordinate
system, and

Nw,y)
Q.- [Ln0)]
az',y') (A, —AL)

is the Jacobi coordinate transform matrix between two coordi-
nate systems 2 —y and z’ —y’. Detailed derivations are presented
in Appendix A. The above canonical expression (14) is valid for
both monostatic and bistatic cases.

Due to the highly oscillatory behavior of the canonical form
PO integral I,, in (14), if one evaluates it accurately by the di-
rect numerical scheme, such as the adaptive Simpson’s rule, the
number of discretized triangle meshes in (11) shall increase as
M = M(k) ~ O(k?). In the following, we will propose a
NSDP method to k-independently evaluate the canonical PO in-
tegral I,, in (14).

V. ANALYZING THE SURFACE PO INTEGRAL BY THE
NUMERICAL STEEPEST DESCENT PATH METHOD

We start with the surface PO integral in (10). After the affine
transformation in Section III, the canonical PO surface integral
I,, on each triangular patch is expressed in (14). It can be re-
duced into three highly oscillatory line integrals [36] on the
three edges of each triangular patch. Then, we develop a NSDP
method for calculating the reduced highly oscillatory line inte-
gral defined on an arbitrary edge of a triangular patch. Finally,
the expressions of the PO scattered electric field on the assem-
bled triangles are presented based on the NSDPs. In the fol-
lowing, we describe the main procedure.

A. Reduction of the Double PO Integral into the Highly
Oscillatory Line Integrals

We consider the canonical highly oscillatory PO integrand in
(14) defined on the domain [Ly, L] x [0, az + b] (Fig. 1). That

is
Lo sar+b ) 5 5
IWZ/ / ple, y)e " ) dyda
Ly 0
L)

- / e (). (16)
JL,

Here, we assume ax + b > 0, and p(x, y) has the similar form
as d,,(z,y) in (13), with coefficients o, m = 1,2,---.6. In
(16), F(z) has the formula

ax+b o
F(z)= / p(a;,y)e‘k” dy
Jo

(CL (7)( ) Lk(a.L+b)

=1Js
OO () 4y (a )[elfg (\/ﬁ(a:ﬁ-b))fl} (17)
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Fig. 1. Integration domains [L1, L2] % [0, aa + b] for the highly oscillatory
integrand of (16) with @ > 0 (a) and a < 0 (b).

(@)

where
: _ \/% ( 5 5 )
Ji(z) = 5\ o + ar” - o
fab), \ _ @3+ apT + az(az +b)
Ja () = 2ik
.(0.0 3 + T
33wy = =g

2ik

The complementary error function crfe(z) [34] is defined by

2 [ e
erfc(z) = — e Ut

Furthermore, F'(z) in (17) can be decomposed into two different
parts defined on the edges y = O and y = ax + b

F(z) = 15" () — 1" () (18)

where

10 (@) =1 (0)+35"" ()

JQ(a,b) (2) =7 (m)erfc (\/—W(a’l‘-l-b)) +j£a,h) (x)eik(aw-‘rb)z .
By substituting (18) into (16), the integral 7¢**) is split into two
parts

Jlab) — Iéa’b) _ I§0’0> (19)

where

Ly -
12(0,0) _ / Jz((],())(‘,l;)e]k.n da
JLy

(20)

has the closed-form formula in terms of the complementary
error function [36]. But meanwhile

; L ¢ o

Iéa’ ) — / JQ(“’ ) (x)el* dx (1)
JIL,

is a highly oscillatory integral that cannot be solved analytically.
Due to the asymptotic behavior and Stokes’ phenomenon of
erfc(z) [34], [36], the phase variation of the integrand in IQ(a’b)
is

glw) = 2% + (az +b)". (22)
In the next subsection, we will introduce the NSDP method to
handle the highly oscillatory integral I. é"”b).

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 61, NO. 8, AUGUST 2013

B. Numerical Steepest Descent Path Method for I ;"’b)

Given the integration domain [y, Ls] shown in Fig. 1, we
define the path functions z = zr_ (p), m = 1,2, p € [0,00),
satisfying three conditions [3]:

(a) zr, (0) = L,,, that is, the paths start at L, ;

(b) Re(g(zr,, (p))) = Re(g(zr,, (0))) = C, where C is a

constant;

(© Im(g(zL, (p))) = p.

The phase term g{(z) of Ié"”b) in the above conditions (a)—(c)
is given in (22). Then, after substituting = xr,, (p) into the
phase function, we see that e?*9(7 L. () = eikg(lm)—kp do.
crease exponentially as O (e *7) when p goes large. Hence, we
call the path functions 2 = xy,, (p) by the NSDPs. Through (a),
(b), and (c), we have [3], [36]

v, (p)? + (avr,, (p) +4)° = L2, + (aLy, +b)? +ip. (23)

After reformulating the above (23), the NSDPs for the end
points L, are

sgn (L) /75 .
rr,, (p) = ﬁ L;nz +ip+zs,pe [0, OO) (24)

where L), = /1 4+ a?(L,,, — ), and the stationary phase point
zs = —(ab/(1 + a?)) satisfies ¢'(z,) = 0.

However, the NSDP for the stationary phase point shall
change in the following way. We notice that the Taylor expan-

sion of the phase function at the stationary phase point z, is

N (x — w4)?

S )40 (- 52)%)

T — T
It means that g(x) — g(x,) is a quadratic function around
zs [3]. Hence, we change the above condition (c¢) with
Im(g(xy, (p))) = p?, and define the corresponding NSDP,
z = wo(p), p € (—o0,00), such that

20(p)? + (azo(p) + b)° = 22 4 (az, + 02 +ip.  (25)
The explicit NSDP formula z(p) can be got from the above
(25) as

el
l()([J)—ﬁ

Fig. 3 shows that the NSDPs defined on the four edges of the
quadrilateral domain shown in Fig. 2. For example, Fig. 3(a)
gives the NSDPs for the integrand I;l“ #1) defined on the edge

—_— —_—
V1V, as shown in Fig. 2. The edge V1V is governed by
the equation y = ajx + 0. ZL‘(l)([)) :L‘(1>(p) and :L‘(l)(p) are
L > Y Lo 0
the NSDPs for the two end points, and the stationary phase
point, respectively. The corresponding integration end points
and stationary phase point are Ly = Vi(1), Ly = Va(1),
and 2, = —(a1by/1 + a?). Here, V,,, = (V,,(1), Viu(2)),
m = 1, 2, 3, 4. Due to the intrinsic Stokes’ phenomenon of
erfc(z) [34], the resultant Stokes’ line is expressed by equation
y = —x — (b1/a1) [36]. The intersection points of the Stokes’
line with the NSDPs ZL‘(()l)(p) and :l?%l) (p) are A and BOW,
Iéflhbl)

+ &g, p € (—00,00). (26)

We notice that the integrand of expressed in (21), i.e.,
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Fig. 2. The x — y quadrilateral domain V;V,V3V,.

Im(x) 0.5
Im(x) 20 (x) A [ ’ |
15 0.4 X0 xp)
10 0.3} xp)
5 0.2
OF 0.1 A®
-5t
-10 0 ol P
_15 / -0.1 Im(x)=-Re(x)-b,/a,2
20 e —02l= —
-20-15-10 -5 0 5 10 15 20 -5 0 5 10
Re(x) Re(x)
(@ (b)
20 \ .
Im(x) {/ N Im(x) 2 A ’
15 ﬂ.in(x)=4Re(x)~b‘la ) A 15 \\ ”
<, & y
10 R 25 1
5 Z N A@ t';f)"’) \ %{5’(»
X
L

P 05
)(s B(‘)
LIANG 0 2

// N, &)
- ) & -05 A
5 XH(D),' ) \\ Z A Im(x)==Re (x)-b/a
I /}/ -1 oW £30) Nl
-15 N 7 -1.5 ,/ \\
—20 RN -2 4 \.
-20-15-10 -5 0 5 10 15 20 -5 -4 -3 -2 -1 0 1 2
Re(x) Re(x)
(© )

Fig. 3. Subfigures (a), (b), (¢), (d) correspond to the numerical steepest descent
paths for the integrand of Iéa"”"b"”‘ ,m =1,2,4 5, defined on the four edges
in Fig. 2. The edges are governed by y = @,z + b, , the phase functions on the
edges are g™ (2) = 22 4 (@, + b,, )%, and the Stokes’ lines are y = —z —
(b /). The integration end points Ly and Lo are the x-values of the end
points on the corresponding four edges. The intersection points of the Stokes’
lines and the NSDPs are A (™) and B("™) . The r-axis points , correspond to
the stationary phase points of the phase terms ¢{™)(z). The resonance points
onedges m are X, . = (x5, mas + b)), m =1,2,4,5.

Jz((“’bl)(:L')e"’k””2 , is analytic. Thus, by applying Cauchy’s inte-
gral theorem, we rewrite I. é‘”’bl) on the NSDPs [36]

It = / I () da
znspp (p)

— /. f(l)(x)eikg(l)(w)dw
* CL‘NST)P(P)

~ )

~~
plansbi)
2,NSDP

+/ 2,7‘1(.7:)(3““2d:1:,
£

o~

@7

gleb)

Zsanalytic

where

FO(x) = ji(a) B (x) + 55" () (28)
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is a slowly varying function, and F°(x) relates to the slowly
varying part of the complementary error function [36]. Here,
g™ () is the phase term by substituting (a1, b;) into (22). The
approximation in (27) is made since the asymptotic approxima-
tion of the complementary error function holds when its argu-
ment goes to infinity. Again by using Cauchy’s integral theorem,

Iéa;bls}? has the expression
a1,b1) (a1.b ai,b a1.,b1
R (29)
Iéal.,bl) _ /'Do efkpei,kg(l)(Lm)f(l)
Jo
!
x (+2@) (@) ap G0y
plenb) — /m o kg (o) 1)
!
< (#"®) (s’ ) 0 6D
and m = 1, 2. Furthermore, the integrand of I éajziz in (27),
i.e., 2j1(z)e™™"  has an antiderivative K () with the formula

T T T _
() = (- ggon = ggos ~ ggaos) ere (Vi)
+ (— - VT —(\p — \/EJJ_LM) e““”z. (32)

2ik/—ik 2ik/—ik

The integrand 241 (2)e™**” in I §“1f§? comes from the Stokes’

phenomenon of erfc(z) [36]. The integral path x;, in (27) is
related to the intersection points between the Stokes’ line y =
—a— (b1 /a1) and zspp(p). By applying Cauchy’s integral the-
orem and based on Fig. 3(a), we have

(V2(1),0) o BO) o
= / 2j1(z)e'* dx —/ 251 (z)e'™™ dx
(V1(1).0) A

(a1,b1)

=K ((V2(1),0)) - K (V1(1),0)) - K (BW)

T K (A<1>) . (33)

C. Representation of the PO Integral on the Assembled
Triangular Patches by the Numerical Steepest Descent Path
Method

We give the expression of Iéahbl) in (27), which is defined

on the edge V; V3 in Fig. 3(a). By invoking “(54-57)” in [36],
the PO scattered surface integral / expressed in (11) can be rep-
resented in terms of the NSDPs

I =—qlenty) g plezha) g pleabs) | plasbs) 3y
where
) <) st e
+K((Va(1),0) - K (A®) G5
o) < ) )
YK (B<4>) K (A<4>) (36)
) < gt 4 o gl
+ K (A®) - K (Vi(1).0).  (7)
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Fig. 4. Parabolic PEC patch.

Originally, I:Eum’bm> ,m = 2,4, 5, are the highly oscillatory PO

. (a.b) o~ o~
line integrals I, defined on the three edges VoV3, V3V,

and V1V, in Fig. 2. Now they are expressed in terms of NSDPs.
Here, IZ("a*:aﬁ:”z ,m = 2,4, 5, have closed-form formulas and
follow the similar derivation procedure as (33). Remark 1. In
the Proposition 1 of [36], we have given the proof that the in-

ternal resonance point contribution to the PO integral I by the

NSDP method is 0. Here, the edge V V3 in Fig. 2 contains an
internal resonance point, and its contribution to the PO integral
Iis 0. Also, when [ in (11) is calculated in the two triangular
patches Av,v,v, and Av,v,v,, the contribution of Ié"’z’bg)
is calculated twice with different signs. Thus, in (34), the con-
tribution Iz(a""b:‘ ) to PO integral I is 0. That is the reason why

. . . . —>
we use the white line in Fig. 2 to denote V' V3.

VI. NUMERICAL RESULTS

We consider the PEC parabolic patch

[,y 2) 12 =1-0.06(z* + 2y + 1), (38)
presented in [17] to benchmark our proposed NSDP method. It
is shown in Fig. 4.

A. The Assembled Triangular Patches Example

The surface is trimmed on the quadrilateral domain in
the © — y plane as shown in Fig. 5, with the four corners
Vi = (0.8932,—-13.3333), Vo = (22.7671,—16.6667),
V3 = (9.8803,3.3333), and V4 = (—11.2201, 16.6667). We
set the parameters as follows: the frequency & € [100,1000],
the incident wave propagates along —z direction, i.e.,
#0 = (0,0, —1). We consider the far-field and backward scat-
tering case. In Fig. 5, the quadrilateral domain V1 V,V3V,
is decomposed into two triangular domains Av,v,v, and
Av,v,v,. When zy > 0, the matrix

5 Bu g 1
W= [ | =006x “ ﬂ L
o ﬁn,S 2

defined in (41) (see Appendix A) is symmetric and positive-def-
inite. Hence, €"%7~(*¥) can be simplified to k(@ +v%) a5 that in
Section III. After the affine transformation in (46), the quadrilat-
eral domain in Fig. 5 is transformed to the quadrilateral domain

20 15 10 -5 0 5 10

15 20

Fig. 5. The & — y quadrilateral domain V; V2V 3V, of the parabolic PEC
patch shown in Fig. 4.

TABLE 1
COMPARISONS OF THE RCS VALUES (dBsm UNIT) PRODUCED AND THE CPU
TIME (SECOND UNIT) CONSUMED BY USING THE NSDP METHOD AND THE
BRUTE FORCE (BF) METHOD TO CALCULATE THE SCATTERED ELECTRIC FIELD
AS GIVEN IN (7)

Frequency £ | BF-RCS NSDP-RCS | BF-CPU | NSDP-CPU
100 24.577195 | 24.573213 4.8984 3.9780
300 24.705320 24.704920 14.4769 3.9000
500 24.684031 | 24.685079 24.3050 4.0092
800 24.675256 | 24.679175 38.8598 3.9780
1000 24.664418 24.667404 48.7815 4.0404
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Fig. 6. Comparisons of the RCS (dBsm unit) values of the PO scattered electric
field (7) by the NSDP method and the brute force method.

in Fig. 2. We apply the Gauss—Legendre quadrature to calculate
these integrals defined on the NSDPs by using (33)—(37).

In Table I, through the brute force method verification results,
we show the error-controllable PO scattered electric field results
produced by the NSDP method in the second and third columns.
Then, we give the comparisons of the CPU time (second unit)
consumed by both methods in the fourth and fifth columns.
We conclude that the proposed NSDP method is frequency-in-
dependent and error-controllable. To see the conclusion more
clearly, Fig. 6 demonstrates the RCS values (dBsm unit) of the
PO scattered electric field E4(r) by both methods. We see that
the results produced by both methods agree well with each other.
Furthermore, Fig. 7 shows that the CPU time consumed by the
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Fig. 7. Comparisons of the CPU time (second unit) for the PO scattered electric
field (7) by using the NSDP method and the brute force method.
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Fig. 8. (a): The x —y quadrilateral domain V1V, V3V, of the parabolic PEC
patch shown in Fig. 4. (b): The > — y affine transformed quadrilateral domain
from (a).

NSDP method for calculating the PO scattered electric field is
frequency-independent as that in [35].

The NSDP method can also be applied for calculating the
PO integral in (4) with the bistatic case. We set the parame-
ters: the frequency k& € [10,500], the incident wave propa-
gates along #( = [0.5,0.5, —/2/2] direction, the observation
point is set along the unit direction = [v/2/4,/6/4, \/_2/2],
the incident electric wave has polarization amplitude E(()Z) =
[—v/2/2,v2/2,0] with Ef;) -#() = 0. In this case, the parabolic
patch in Fig. 4 is trimmed on the quadrilateral domain in the = —
y plane as shown in Fig. 8(a). Compared with the above monos-
tatic example, the different parts for calculating the bistatic scat-
tered electric field in (4) by the NSDP method are:

1) The bistatic scattered electric field expressed by (4) is a
vector function with three highly oscillatory PO type inte-
grals now, and shall be calculated three times by using the
NSDP method. This is different from the scalar highly os-
cillatory PO type integral in (8).

2) Due to the bistatic parameters of the source and observa-
tion points, the stationary phase point X, = [0,0] in
Fig. 5 changes to X, = [~1.5920, 1.4582]7 in Fig. 8(a).
Hence, the phase function v(r’) in (10) is different from
that in monostatic case.

3) Since the phase function in the PO integrand changed, the
corresponding numerical steepest descent paths defined on
the four edges in Fig. 8(b) shall also change. For example,
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Fig.9. (a): Steepest descent paths for the integrand of 7£"2°2) defined on edge
2 — V> V3 with the equation ¥y = a2 + ba. The phase function on the edge
is g2(x) = 22 4 (a2x + b2)?. The Stokes’ line is y = —x — (bs/as. The
integration end points are L; = V3(1), Ly = V3(1). The intersection points
of the Stokes’ line and the NSDP Ié2>(p) is Az, corresponds to the sta-
tionary phase point of g2 (). (b): Zoomed in subfigure from Fig. 9(a).
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Fig. 10. Comparisons of the RCS (dBsm unit) values of the PO scattered elec-
tric field (1) by the NSDP method and the brute force method.
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Fig. 11. Comparisons of the CPU time (second unit) for the PO scattered elec-
tric field (1) by using the NSDP method and the brute force method.

the NSDPs for edge 2— V5 V3 in Fig. 3(b) change to that in
Fig. 9(a). Hence, the corresponding /. é‘” b2) i (35) changes
to the following equation:

1) = ) - ) 1 K (Va(1),0) - K (A®))

(39

By using the NSDP method, Figs. 10, 11 again demonstrate

the error-controllable and frequency-independent bistatic PO
scattered field results.
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Fig. 12. Red line: The relative error of the monostatic scattered electric field
E.(r) results [see (7)] produced by using the NSDP method relative to the
brute force method on the parabolic patch. Blue line: The relative error of the
monostatic scattered electric field E,(r) results [see (7)] produced by using
the asymptotic expansion method [17] relative to the brute force method on the
parabolic patch.

B. Comparisons of the Similarities and Differences Between
the Numerical Steepest Descent Path Method and the
Asymptotic Expansion Method

The similarities between the numerical steepest descent
path method and the asymptotic expansion method in [17] are,
first, the amplitude and phase terms in the PO integrands are
approximated as polynomials, and quadratic variations of the
phase terms are considered in both works. Second, triangular
discretization patches are used. Thirdly, surface PO integral
is reduced to several line integrals. Finally, the computational
cost is wave frequency independent.

The differences between both works are, first, the work in
[17], [18] is done by using the divergence theorem to reduce the
PO surface integral as several line integrals. Their line integrals
are expressed in terms of special generalized Fresnel functions,
and the transition functions. The numerical steepest descent path
(NSDP) algorithm in this paper is proposed by using the contour
deformation in the complex plane, and the resultant PO line in-
tegrals are expressed in terms of exponentially decay integrand
defined on the corresponding NSDPs. Second, in this work,
both the amplitude and the phase terms in the PO integrand are
second order polynomials. In the recent work [18], the ampli-
tude is assumed to be linear and the phase term is quadratic.
Finally, the NSDP algorithm for the PO integral is done exactly
with only numerical approximation. And the asymptotic expan-
sion in [18] is used for general type PO integrand.

To show the strength of the NSDP method for calculating
E;(r) on the parabolic patch, Figs. 12, 13 present the com-
parison of relative errors between the NSDP and asymptotic
expansion [17] methods relative to the brute force method.
From these two figures, it can be seen that the NSDP method
can significantly improve the E,(r) accuracy by around two
digits (10~2) when the working frequency & is not extremely
large, including both the monostatic and bistatic cases. Numer-
ical tests also show that the comparison relative errors by these
two methods rely on the parameters of the incident wave and
observation point vectors.
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Fig. 13. Red line: The relative error of the bistatic scattered electric field E ,(r)
results [see (4)] produced by using the NSDP method relative to the brute force
method on the parabolic patch. Blue line: The relative error of the bistatic scat-
tered electric field E¢(r) results [see (4)] produced by using the traditional
asymptotic expansion method [17] relative to the brute force method on the
parabolic patch.

Fig. 14. (a): The x — y quadrilateral domain V1 V2V 3V, of the parabolic
PEC patch shown in Fig. 4. (b): The & — y affine transformed quadrilateral
domain in Fig. 14(a).

C. The Rectangular Domain Example

The second example is the PO surface integral I defined
on the rectangular domain. After the affine transformation of
the quadrilateral domain V;V4oV3Vy as shown in Fig. 14(a),
a rectangular domain in the # — y domain is presented in
Fig. 14(b). The canonical form PO integral I given in (11) has
the closed-form formula in terms of the special complementary
error function (see Appendix B).

The parameters are the same as those in the monostatic case
of Example 1 except that we consider the rectangular domain in
Fig. 14(b). In Fig. 15, we show the RCS results of the PO scat-
tered electric field E,(r) by using the NSDP method and the
closed-form formula (49) in Appendix B. The results achieved
by the NSDP method agree well with those by the closed-form
formula, and the computational efforts are frequency-indepen-
dent.

Physically, the contributions to the PO integral I expressed in
(34) can be classified into those from the stationary phase point,
the boundary resonance points and boundary vertex points. In
[36], the stationary phase point, resonance and vertex points
contributions by the NSDP method are exactly extracted. Fig. 16
presents the comparison of the total vertex and resonance point
contributions for the PO integral I by using the NSDP method
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Fig. 15. Comparisons of the RCS (dBsm unit) values of the PO scattered elec-
tric field (7) by using the NSDP method and the closed-form formula (49).
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Fig. 16. Comparisons of the total vertex and resonance points contributions for
the PO scattered electric field (7) by using the NSDP method and the closed-
form formula.

and the asymptotic expansion approach in [17]. It can be ob-
served that the critical point contribution results produced by
both methods agree well with each other when the frequency &
is large enough.

VII. CONCLUSION

In this work, we propose the NSDP method to calculate the
highly oscillatory PO integral on the parabolic patch, including
both monostatic and bistatic cases. The PO scattered field is ex-
pressed as the highly oscillatory surface integrals defined on the
assembled triangular patches. Quadratic functions are used to
approximate the phase and amplitude terms of the PO integrand.
After the affine transformation, the PO integral on the triangular
patch is simplified to its canonical form. By invoking the NSDP
method, the canonical form PO integral on the assembled tri-
angular patches is expressed based on the NSDPs. Numerical
examples illustrate that the proposed NSDP method for the sur-
face PO integral is frequency-independent and error-control-
lable. Furthermore, compared with the asymptotic expansion
approach, the proposed NSDP method can improve the electric
scattered field accuracy by around two digits when the working
wave frequencies are not large enough.
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APPENDIX A
CANONICAL FORMS OF THE QUADRATIC PO INTEGRALS

We notice that @,,(x, y) in (12) can be expressed in terms of
the matrix notation as

/5n(wa y) = [l y] . Wn . |:f;:| + Bn;Q-IE + Bn.ﬁy + Bn,l

- [=L - (Nln y— gn] : Wn |:j : :| + Gn (40)
where the symmetric matrix W,, has the form
2 Br.s
W, = [[M 2 ] . (41)
Bns 3
2 n,5

We consider the case that W, is nondegenerate. In (40), G,,
is a constant, then the coefficients a,, and ¢, can be uniquely
determined by the relationships

/@11,,2 + 26n,,4dn + ﬂmn,(ién =0
1@11,,3 + 2[311,5&77, + /én,ﬁdn =0.

More specifically

[a } (2W,,) 1 [_@"’2] . 42)
Cn 7/6n,3
The coefficient ,, in (40) is

C?n = - ([;n,ila'i + ,Hn 5(7 + Hn 60n(’n Bn,l) . (43)

Since the matrix W, is nondegenerate and symmetric, we can
always find the invertible congruent transformation matrix Q,,,
such that

Qr W, Q, =D, [X“ } (44)
Xn,2
where
_ | dn11 gn2
Q'L_ |: In,21  qn,22 :|
V |ﬁn,4| - Bu - >
2\/|Bn.4l\/ 3. J(—)
= (45)

- 2
« - a
P —1{ fns
\/ }371’57‘}371,4( 2 )

and x, ; = 1 or —1, for j = 1 or 2. Combining (40)—~(44), and
using the coordinate transformation, we have

' S [T —an
L/’} - [y - cn]

The quadratic phase function #,,(z, ) in (12) can be simplified
to its canonical form:

(46)

~ 2 2
7)"(.7)“ .7/) = Xn,l(m/) + XTL72(.7//) s (47)

with x,,; = 1 or —1, for j = 1 or 2. The matrix Q,,! in (46)

has the formula
1 —1 1
1 _ | 9n,11 n22 (‘In,12 - %,11%,12)

no — (48)
0 qn,122
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Notice that the coordinate transform in (46) is an affine trans-
formation. Then, it will always map the triangle A,, to another
triangle A/ . In this manner, in Section II, each summation in-
tegral term in (11) can be written as (14).

APPENDIX B
THE CLOSED-FORM FORMULA OF THE PO INTEGRAL / ON THE
RECTANGULAR DOMAIN

In Fig. 14(b), we denote the - and y values of the four corners
on the rectangular domain V,VsV3Vyas V,,,(1) and V,,,(2),
m = 1, 2, 3, 4. Then, the PO integral I on the rectangular
domain has the closed-form formula

Va(l) Va(2)
/ / plz, y)e”’“(“L +y )dy(lT
Vi(1) JVi(2)
Va(l)
_ / e T (V4(2), 1) — T (V4(2),2)] da

Vi (1)
=8(V3) = 5(V2) = [S(V4) — S(V1)] (49)

a3+ aer + asVi(2) ik Vi(2)?

2ik
Nz
W ((11 + s + gz’ — ﬁ) erfc (\/74 KV (2 ))
I =1,4, and

S(Vm) = [Zl (Vm(z)) + Z> (Vm(l))]
et (VEIRV (1)) + Zs (Vin (1)) €4V 07,

7 (Vin(2) = — %oqcrfc (@V,,,,(z))
8k2 (og + ag) erfe (\/TV (2 ))

B VT (1361',1«\/,77(2)2
dikn/ —ik

- ‘—\/E.QSVWL(2)6MVW(2>Z
4ik/—ik

VT _ VVn(l )

Zo (V, (1)) = — Q
2 (VD) = = 0 %" ™ ik
1 2
Z3(Vi(1)) = — maﬁe"’“vmm ym=1,2,3,4. (50)
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