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Abstract-The connections between Maxwell’s equations and 
symplectic matrix are studied. First, we analyze the continuous-
time Maxwell’s differential equations in free space and verify its 
time evolution matrix (TEMA) is symplectic-unitary matrix for 
complex space or symplectic-orthogonal matrix for real space. 
Second, the spatial differential operators are discretized by 
pseudo-spectral (PS) approach with collocated grid and by finite-
difference (FD) method with staggered grid. For the PS approach, 
the TEMA conserves symplectic-unitary property. For the FD 
method, the TEMA conserves symplectic-orthogonal property. 
Finally, symplectic integration scheme is used in the time 
direction. In particular, we find the symplectiness of the TEMA 
also can be conserved. The mathematical proofs presented are 
helpful for deep researching the symplectic PSTD approach and 
the symplectic FDTD method. 

I. INTRODUCTION 

Most non-dissipative physical or chemical phenomenons 
can be modeled by Hamiltonian differential equations whose 
time evolution is symplectic transform and flow conserves the 
symplectic structure [1]. The symplectic schemes include a 
variety of different temporal discretization strategies designed 
to preserve the global symplectic structure of the phase space 
for a Hamiltonian system. Compared with other non-
symplectic methods, the symplectic schemes have 
demonstrated their advantages in numerical computation for 
the Hamiltonian system [2], especially under long-term 
simulation. Since Maxwell’s equations can be written as an 
infinite dimensional Hamiltonian system, a stable and accurate 
solution can be obtained by using the symplectic schemes, 
which preserve the energy of the Hamiltonian system constant. 

Recently, many scientists and engineers from computational 
electromagnetics society have focused on the symplectic 
schemes for solving Maxwell’s equations. Symplectic finite-
difference time-domain (FDTD) method [3, 4], symplectic 
pseudo-spectral time-domain (PSTD) approach [5], and multi-
symplectic scheme [6] are proposed and advanced. Although 
some numerical results on electromagnetic propagation, 
penetration, and scattering have been reported, rigorous 
mathematical background on the issue is seldom studied. 

What are the connections between Maxwell’s equations and 
symplectic matrix? Can the symplectiness of Maxwell’s 
equations be persevered if we discretize the continuous-time 
differential equations both in spatial domain and in time 
domain? For answering the questions, we present the 
convincing mathematical proofs in detail 

II. PRELIMINARY KNOWLEDGES 

Definition 1.1. The matrix T  is called real-symplectic 
matrix if T JT JΤ = . The group including all the real-
symplectic matrices is called real-symplectic group. We sign it 
as (2 , )Sp n R . 

Definition 1.2. B  is an infinitesimally real-symplectic 
matrix if 0TB J JB+ = . The infinitesimally real-symplectic 
matrices can be composed of Lie algebra via anti-commutable 
Lie Poisson bracket [ , ]A B AB BA= − . 

Theory 1. B  is an infinitesimally real-symplectic matrix 
⇒  exp( ) (2 , )B Sp n R∈ . 

Above mentioned definitions and theory can be extended to 
complex space [7]. 

Definition 2.1. The matrix T  is called complex-symplectic 
matrix if HT JT J= . The group including all the complex-
symplectic matrices is called complex-symplectic group. We 
sign it as (2 , )Sp n C . 

Definition 2.2. B  is an infinitesimally complex-symplectic 
matrix if 0HB J JB+ = . The infinitesimally complex-
symplectic matrices can be composed of Lie algebra via anti-
commutable Lie Poisson bracket [ , ]A B AB BA= − . 

Theory 2. B  is an infinitesimally complex-symplectic 
matrix ⇒  exp( ) (2 , )B Sp n C∈ . 

Definition 3. If 0
1 2( , , )np p p p= , 0

1 2( , , )nq q q q= , 
0 0

2( , ) np q R∈ Ω ⊆ , and 0t ∈ Γ , the Hamiltonian canonical 
equations [2] can be written as 

0

i

i

dp H
dt q

∂= −
∂

, 
0

i

i

dq H
dt p

∂= +
∂

, 1, 2,i n=         (1) 

where 0 0
0( , , )H p q t  is the Hamiltonian function, Ω  is the 

phase space, and Ω×Γ  is the extended phase space. 
Theory 3. If the solution of (1) at any time t∗  is ( , )p q∗ ∗  

and the ( , )p q∗ ∗  still satisfies (1), the Jacobi matrix Θ  is a 
real-symplectic matrix 

T J JΘ Θ =    (2) 

where 
0 0

0 0 0 0

/ /( , )
( , ) / /

p p p qp q
p q q p q q

∗ ∗∗ ∗

∗ ∗

 ∂ ∂ ∂ ∂∂Θ = =  ∂ ∂ ∂ ∂ ∂ 
. 

Theory 4. If the time evolution operator of (1) from 0t  to t∗  
is 0( , )t t∗Ψ  and 0 0

0( , ) ( , )( , )p q t t p q∗ ∗
∗= Ψ , the operator 

conserves the symplectic structure 
0( , )t t ϖ ϖ∗ ∗

∗Ψ =   (3) 
where ^dp dqϖ ∗ ∗ ∗= , 0 0 0^dp dqϖ = , and 0( , )t t ∗

∗Ψ  is the 
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conjugate operator of 0( , )t t∗Ψ . The time evolution operator is 
also called Hamiltonian flow or symplectic flow. 

Theory 5. The matrix 
0

0
A

L
A

 =  − 
 ⇒  

cos( ) sin( )
exp( )

sin( ) cos( )
A A

L
A A

 =  − 
. 

Theory 6. If the matrix 
0

0
A

L
A

 =  − 
 and TA A= , we 

have: (1) L  is skew-symmetric, i.e. TL L= − ; (2) exp( )L  are 
both orthogonal and real-symplectic matrices. We call the 
exp( )L  symplectic-orthogonal matrix. 

Theory 7. If the matrix 
0

0
A

L
A

 =  − 
 and HA A= , we 

have: (1) L  is skew-Hermitian, i.e. HL L= − ; (2) exp( )L  are 
both unitary and complex-symplectic matrices. We call the 
exp( )L  symplectic-unitary matrix. 

III. MAXWELL’S EQUATIONS AND SYMPLECTIC MATRIX 

A. The symplectiness of continuous-time Maxwell’s differential 
equations 

A helicity generating function [8] for Maxwell’s equations 
in free space is introduced as 

0 0

1 1 1( ) ( )
2

G
ε µ

= ⋅∇ × + ⋅∇ ×H,E H H E E   (4) 

where ( , , )x y zE E E Τ=E  is the electric field vector, 

( , , )x y zH H H Τ=H  is the magnetic field vector, and 0ε  and 

0µ  are the permittivity and permeability of free space. 
The differential form of the Hamiltonian is 

G
t

∂ ∂= −
∂ ∂
H

E
, G

t
∂ ∂=
∂ ∂
E

H
  (5) 

According to the variational principle, we can derive 
Maxwell’s equations in free space from (5) 

ˆ ˆL
t
   ∂ =      ∂    

H H

E E
             (6) 

3 3 3 3
0 0

3 3 3 3
0 0

1{0}

1 {0}

R

L
R

µ ε

µ ε

× ×

× ×

 − 
 =  
  
 

, 0

0

ˆ ε
µ

=E E  (7) 

0

0

0

z y

R
z x

y x

∂ ∂ − ∂ ∂ 
 ∂ ∂

= − = ∇ × ∂ ∂ 
∂ ∂ − ∂ ∂ 

  (8) 

where 3 3{0} ×  is the 3 3×  null matrix and R  is the three-

dimensional curl operator. 

The time evolution of (6) from 0t =  to tt = ∆  can be 
written as 

( ) exp( ) (0)ˆ ˆt t L
   

∆ = ∆      
   

H H

E E
  (9) 

where exp( )t L∆  is the time evolution matrix (TEMA) or 

symplectic flow of Maxwell’s equations. 

For real space, we define the inner product as 

( , ), ( , ) ( , ) ( , )F t G t F t G t d
∞

−∞
< >= ⋅∫r r r r r   (10) 

where y zx y z= + +xr e e e  is the position vector and t  is the 
time variable. 

According to the identity both in Hilbert space and in 
generalized distribution space 

, ,F G F G
δ δ
∂ ∂< >= − < >

∂ ∂
, , ,x y zδ =   (11) 

we can know 
δ
∂

∂
 is a skew-symmetric operator. Hence R  is 

a symmetric operator, i.e. TR R= .  
Based on Theory 6, the TEMA of Maxwell’s equations is a 

symplectic-orthogonal matrix in real space. 
For complex space, we define the inner product as 

________

( , ), ( , ) ( , ) ( , )F t G t F t G t d
∞

−∞
< >= ⋅∫r r r r r   (12) 

The forward and inverse Fourier transform for 
electromagnetic field components are respectively 

0
1( , ) ( , ) exp( )
2

F t F t j d
π

∞

−∞
= ⋅∫0 0k r k r r   (13) 

0
1( , ) ( , ) exp( )
2

F t F t j d
π

∞

−∞
= − ⋅∫ 0 0 0r k k r k  (14) 

where 0j  is the imaginary unit and x y y z zk k k= + +0 xk e e e  is 
the wave vector. For simplicity, we can note (13) and (14) as 
F Fφ=  and 1F Fφ −= . 

First, with the help of Parseval theorem 
1, ,F G F Gφ φ −< >=< >    (15) 

we can know the Fourier operator φ  is a unitary operator, i.e. 
1 Hφ φ− = . 
Next, using the differential property of Fourier transform 

0
F j k Fδδ

∂ ↔ −
∂

, , ,x y zδ = , we can obtain the spectral-

domain form of Maxwell’s equations 

3 3 3 3
0 0

3 3 3 3
0 0

1{0}

1ˆ ˆ{0}

R

t R

µ ε

µ ε

× ×

× ×

 −    ∂     =     ∂      
 

H H

E E
 (16) 

0 0

3 3 0 0

0 0

0
0

0

z y

z x

y x

j k j k
R j k j k

j k j k
×

 −
 = − 
 − 

  (17) 



where R  is a Hermitian matrix, i.e. HR R= . 
Finally, using the unitary property of the Fourier operator, 

we can convert the spectral-domain form (16) into the spatial-
domain form (18),  

3 3 3 31
0 0 3 3 3 33 3 3 3

1
3 3 3 33 3 3 3

3 3 3 3
0 0

3 3 3 3
0 03 3 3 3

3 3 3 3
3 3 3 3

0 0

1{0}
{0}{0}

ˆ ˆ{0}1{0} {0}

1{0}
{0}

1{0} {0}

H

H

R

t R

R

R

µ ε

µ ε

µ ε

µ ε

× ×−
× ×× ×

−
× ×× ×

× ×

× ×

× ×

× ×
× ×

 − 
   Φ Φ  ∂  =           Φ∂ Φ        

 
 −

 Φ =  Φ 
 

H H

E E

3 3 3 3

3 3 3 3

3 3 3 3 3 3 3 3
0 0

3 3 3 3 3 3 3 3
0 0

{0}
ˆ{0}

1{0}

ˆ1 {0}

H

H

R

R

µ ε

µ ε

× ×

× ×

× × × ×

× × × ×


 Φ      Φ  

 − Φ Φ 
  =     Φ Φ   

H

E

H

E

 

(18) 
where 3 3 ( , , )diag φ φ φ×Φ = , 3 3 ( , , )H H H Hdiag φ φ φ×Φ = , and 

1 1 1 1
3 3 ( , , )diag φ φ φ− − − −
×Φ = . It is easy to show that 

3 3 3 3 3 3
HR R× × ×= Φ Φ  is a Hermitian matrix, i.e. HR R= . 

Based on Theory 7, the TEMA of Maxwell’s equations is a 
symplectic-unitary matrix in complex space. 

It is well known that the total energy of electromagnetic 
field in free space can be represented as 

0

2 2
0 0

1 ˆ ˆ( , , )
2
1 1( | | | | )
2 2V

En

dV

µ

µ ε

= < > + < >

= +∫∫∫

H H E E

H E
  (19) 

No matter in complex space or real space, the TEMA 
exp( )t L∆  accurately conserves the total energy of 
electromagnetic field. In other words, the exp( )t L∆  only 
rotates the electromagnetic field (Theory 5). 

B. The symplectiness of continuous-time space-discretized 
Maxwell’s equations 

For pseudo-spectral (PS) approximation, we discretize the 
infinite dimensional electromagnetic field components with 
collocated grid, such as ( , , )d i j k→E E  and ( , , )d i j k→H H . 

The three-dimensional discrete Fourier transform (DFT) 
and inverse DFT (IDFT) can be noted as 

d d
dF Fφ= , 1d d

dF Fφ −=   (20) 
Similarly, dφ  is a n n×  unitary matrix. 

Using (20), the continuous-time space-discretized 
Maxwell’s equations can be obtained. 

6 1 6 1
ˆ ˆ

d d

dd d
n n

L
t

× ×

   ∂ =      ∂    

H H

E E
  (21) 

3 3
0 0

3 3
0 0

1{0}

1 {0}

H
n n d d d

d
H
d d d n n

R

L
R

µ ε

µ ε

×

×

 − Φ Φ 
 =  

Φ Φ  
 

 (22) 

where 3 3( , , )d d d d n ndiag φ φ φ ×Φ = , 3 3( , , )H H H H
d d d d n ndiag φ φ φ ×Φ = , 

and dR  is the discretized 3 3n n×  Hermitian matrix 

corresponding to R . The H
d d d dR R= Φ Φ  is still a Hermitian 

matrix and therefore the TEMA exp( )t dL∆  conserves the 
symplectic-unitary property. 

For finite-difference (FD) approximation, we discretize the 
infinite dimensional electromagnetic field components with 
staggered grid, such as 

1( , , )
2

d
x xE E i j k→ +  1( , , )

2
d

y yE E i j k→ +  

1( , , )
2

d
z zE E i j k→ +  1 1( , , )

2 2
d

x xH H i j k→ + +  

1 1( , , )
2 2

d
y yH H i j k→ + +  1 1( , , )

2 2
d

z zH H i j k→ + +  

As a result, the continuous-time space-discretized 
Maxwell’s equations are 

3 3 ,
0 0

6 1 6 1, 3 3
0 0

1{0}

ˆ ˆ1 {0}

nx n d Ed d

d d
n nd H nx n

R

t R

µ ε

µ ε
× ×

 −    ∂  =       ∂      
 

H H

E E
  (23) 

For (23), if the order of electric field components are not 
rearranged, we only have , ,

T
d E d HR R=  and T

d dL L= −  [9, 10]. 
Although it is the fact that exp( )t dL∆  is an orthogonal matrix, 
the symplectiness of the TEMA seems not be hold. 

Take a one-dimensional case for example. Figure 1 shows 
the spatial distribution of electromagnetic field components. 

 
Fig. 1. The spatial distribution of one-dimensional 
electromagnetic field components with staggered grid. 
 

Using the periodic boundary condition and the second-order 
centered difference, the (23) can be converted into (24) for the 
one-dimensional case. 

1
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4

5

1

2

3

4

5

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ˆ 0 0 0 0 0 0 0 0
ˆ 0 0 0 0 0 0 0 0
ˆ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0ˆ
0 0 0 0 0 0 0 0ˆ

H
H
H
H
H

Et
E

E

E

E

κ κ
κ κ

κ κ
κ κ

κ κ
κ κ

κ κ
κ κ

κ κ
κ κ

  −      −    −     −    −∂    =  −∂       −   −    −  −    

1

2

3

4

5

1

2

3

4

5

ˆ

ˆ

ˆ

ˆ

ˆ

H
H
H
H
H

E

E

E

E

E

 
 
 
 
 
 
 
 
 
 
      
 

 

(24) 



where 
0 0

1 1

z

κ
µ ε

=
∆

. In addition, we can testify 

, ,
T

d E d HR R= . 
Fortunately, both the matrix ,d ER  and the matrix ,d HR  are 

Toeplitz matrices. So we can change them into Hankel 
matrices by rearranging the electric field components. 

1

2

3

4

5

2

1

5

4

3

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ˆ 0 0 0 0 0 0 0 0
ˆ 0 0 0 0 0 0 0 0
ˆ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0ˆ
0 0 0 0 0 0 0 0ˆ

H
H
H
H
H

Et
E

E

E

E

κ κ
κ κ

κ κ
κ κ

κ κ
κ κ

κ κ
κ κ

κ κ
κ κ

  −      −    −     −    −∂    =  −∂       −  −    −   −    

1

2

3

4

5

2

1

5

4

3

ˆ

ˆ

ˆ

ˆ

ˆ

H
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H
H
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E

E

E

E

 
 
 
 
 
 
 
 
 
 
           
 

 

(25) 
Here it is easy to see that , ,d E d H dR R R= =  and T

d dR R= . 
Based on Theory 6, the TEMA exp( )t dL∆  can hold the 
symplectic-orthogonal property. 

C. The symplectiness of discrete-time space-discretized Maxwell’s 
equations 

No matter in complex space or in real space, we can split 
the discretized dL  into dU  and dV  

d d dL U V= +    (26) 
 

3 3
0 0

3 3 3 3

1{0}

{0} {0}

nx n d
d

nx n nx n

R
U µ ε

 − =  
 
 

, 
3 3 3 3

3 3
0 0

{0} {0}
1 {0}

nx n nx n

d
d nx n

V R
µ ε

 
 =  
 
 

 

(27) 
The discretized TEMA can be approximated by the m-stage 

pth-order symplectic integration scheme [3, 11] 
1

1

exp( ( )) exp( ) exp( ) ( )
m

p
t d d l t d l t d t

l

U V d V c U O +

=

∆ + = ∆ ∆ + ∆∏  

(28) 
where lc  and ld  are the symplectic integrators. 

For real space, T
d dR R=  and therefore dU  and dV  are 

infinitesimally real-symplectic matrices. Likewise, for 
complex space, H

d dR R=  and therefore dU  and dV  are 
infinitesimally complex-symplectic matrices. In particular, we 
have: (1) dU  and dV  can be composed of Lie algebra. (2) 
exp( )l t dd V∆  and exp( )l t dc U∆  are the symplectic matrices.  

Although the orthogonal properties can not be retained by 
the two matrices exp( )l t dd V∆  and exp( )l t dc U∆ , the 
determinants of them are equal to 1 [12]. Thus the symplectic 
integration scheme is conditionally stable and does not have 
amplitude error. 

IV. CONCLUSION 

The mathematical proofs are presented for establishing the 
connections between Maxwell’s equations and symplectic 
matrix. First, for continuous-time Maxwell’s differential 
equations, its TEMA which accurately conserves the 
electromagnetic energy is symplectic-orthogonal matrix for 
real space or symplectic-unitary matrix for complex space. 
Second, for continuous-time space-discretized Maxwell’s 
equations, the TEMA is symplectic-unitary matrix for PS 
approximation with collocated grid or symplectic-orthogonal 
matrix for FD approximation with staggered grid. Third, for 
discrete-time space-discretized Maxwell’s equations, the 
TEMA conserves the symplectiness and does not produce 
amplitude error with the symplectic integration scheme. The 
conclusions can be easily extended to homogeneous and 
lossless media and are helpful for further numerical study of 
symplectic scheme. 
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