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Total Field and Scattered Field Technique for Fourth-Order Symplectic Finite
Difference Time Domain Method *
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Using symplectic integrator propagator, a three-dimensional fourth-order symplectic finite difference time domain
(SFDTD) method is studied, which is of the fourth order in both the time and space domains. The method is
nondissipative and can save more memory compared with the traditional FDTD method. The total field and
scattered field (TF-SF) technique is derived for the SEDTD method to provide the incident wave source conditions.
The bistatic radar cross section (RCS) of a dielectric sphere is computed by using the SEFDTD method for the
first time. Numerical results suggest that the SFDTD algorithm acquires better stability and accuracy compared

with the traditional FDTD method.
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Symplectic methods include a variety of time dis-
cretization methods designed to preserve the global
symplectic structure of the phase space for a Hamil-
tonian system. They show substantial benefits in nu-
merical computation for Hamiltonian systems, espe-
cially in long-term simulations. Recently, the symplec-
tic methods have been introduced to computational
electromagnetics (CEM). The advantages of the sym-
plectic methods have been verified in Refs. [1-11].

In Ref. [9], we proposed a new method for solv-
ing two-dimensional Maxwell’s equations employing
the symplectic partitioned Runge-Kutta method. In
this Letter, we report our further research directly in
the three-dimensional (3-D) case. A fourth-order sym-
plectic finite difference time domain (SFDTD) method
is derived by using a symplectic integrator propaga-
tor, which is of fourth-order in both the time and
space domains. The method is nondissipative and can
save more memory compared to the traditional FDTD
method.?!

In particular, we mainly deal with the TF-SF tech-
nique using the SFDTD method. By revising the
SFDTD formulation near TF-SF boundaries, a general
sine waves and a gaussian pulse source are successfully
propagated in the total field without any leakage to
the scattered field region.

Maxwell’s equations in a homogeneous, lossless,
and sourceless medium can be written in a matrix

form as
L@)-em(®)
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where R is a 3 X 3 matrix representing the three-

dimensional curl operator, p and ¢ is the permittivity
and permeability. Equation (1) represents a system
of the first-order linear ordinary differential equations
that have the following analytical solutions:

(I;> (4¢) = exp(4¢(U +V)) <I;> N

Since the matrices U and V do not commute (i.e.,
UV # VU), in the time domain the symplectic inte-
grator propagator can be adopted approximately to
be

exp(A(U +V)) = Hexp(DlAtV)
1=1
-exp(C1ArU) + O(A?'H)

= [[s + DiAV)(Is + C1AD)
=1
+0(4A7), (4)

where Ig is the 6 X6 unit matrix , C; and D is the con-
stant coefficients of the propagator obeying symmetry
relations C; = Cpr1—; (0 <l <m+1), D; = Dy
(0 <! < m)and D,, =0, m is the stage number or
iterated number needed in every integer time step, n
is the order of approximation. When m =5 and n = 4
are chosen, the fourth-order integrator propagator is
obtained. These coefficients can be found in Ref. [4].

In the space domain, we use the fourth-order dif-
ference operators to discretize the first-order space dif-
ferential operators as follows:

(g) 21 fixry2 = ficry2) = fixspz + fiosge (5)
dx)i 244, '

Thus the proposed method is referred to as the (4, 4)
method. The detailed expressions of the x component
of the normalized E(E,) in the (4, 4) method can be
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derived as
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where ¢, is the local relative permittivity at point
(14 1/2,j,k) and € = e,e9, CFL is the Courant—
Friedrichs-Levy number, A; and A, are the temporal
and uniform spatial increments, respectively.

We consider the plane wave propagating in the y
direction and E is polarized in the z direction. We
choose a source point kg, and incident E, is added
at the point. Here the fourth-order discretization for
incident field is also used, i.e.

Ejul*() =
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Bt P (k) =Tl A, n()=n+ Y.
m=1  (10)

where T is a time function of the incident wave.

Perfect absorbing boundary conditions (ABCs) de-
fined in Eq. (11) are added at every integer time step,
if we set CFL = 0.5, then

Eine,-(1) =

mec,z

Epi(2), Ep..(0)=

wmnmc,z wmnmc,z

Ep(1), (11)
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Unlike the traditional FDTD method, we at least
apply similar ABCs to three begin points and three
endpoints. Generally, in our numerical examples one-
dimensional source CFL=0.5 is kept to be unchange-
able, but we change it in the three-dimensional case.
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Fig. 1. The snapshot of E, in the z-y plane at different
time step: (a) n =20 and (b) n = 60.

We can obtain the source conditions for all fields,
if their concrete positions are figured out. The fields
must be modified according to the requirements of
consistency between the TF-SF boundaries. For ex-
ample, the consistency conditions for F, at the TF-SF
boundary j = jo grid plane are given as follows:

1 1
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A gaussian pulse plane wave with Ej,.., =
exp[—(n — 10)?/50] propagating along the y direction
is considered. The snapshot of F, in the x —y plane at
different time steps is shown in Fig.1. We discretize
the problem using a cube grid. The simulation do-
main is 60 X 60 x 60 cells, and the total field (TF)
contains 20 x 20 x 20 cells. The source point is set at
the fifth grid away from the boundary of the TF re-
gion. We choose A; = 0.1 with being wavelength and
set three-dimensional CFL=0.5. When n = 20, the
wave just enters into the TF region. When n = 60,
half the wave packet has moved out of the TF region.
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Meanwhile, the largest magnitude of the field value in
the SF zone is lower than the order of 10710,
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Fig.2. A three-dimensional sine plane wave E, at the
same point within one period: (a) Time-domain profile
waveform, and amplitude spectra of the profile waveform

(b) in the SFDTD scheme and (c) in the FDTD method.

Next we set 3-D CFL=1.0, A; = 0.1 wavelength.
We draw one-dimensional projection of 3-D sine plane
wave at the same point within one period in Fig. 2.
In addition, amplitude spectrum is calculated by fast
Fourier transform. From Fig.2(b), using the SFDTD
method, the electric field profile propagates without
any changes in the profile compared with the analytic
solution. While in Fig. 2(c), the results clearly show

that the SFDTD method acquires better accuracy and
numerical dispersion than traditional FDTD method
under the same stability condition.
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Fig. 3. E-plane bistatic RCS of the dielectric sphere.

Finally, we consider a dielectric sphere illuminated
by a plane wave propagating in the z direction and
E polarized in the x direction. The frequency of the
incident wave is 300 MHz. The sphere has a diam-
eter of 1.0m, a relative permittivity ¢, = 4.0, and
a conductivity of 0.3. The size of the cell is 0.05m
and CFL is 0.5. The total computational domain is
83 x 83 x 83 cells, total field occupies 68 x 68 x 68 cells.
The bistatic RCS in the E-plane is simulated within
1700 time steps. Mie series is presented as the refer-
ence solution. From Fig. 3, the results obtained by the
SFDTD scheme are better in agreement with the Mie
series than the traditional FDTD method. The global
relative rms RCS error is obtained to be 0.2147 by us-
ing the SFDTD scheme, which is better than 0.2247
of the traditional FDTD method.
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