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Two-Step Enhanced Deep Learning Approach for
Electromagnetic Inverse Scattering Problems
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Abstract—In this letter, a new deep learning (DL) approach is
proposed to solve the electromagnetic inverse scattering (EMIS)
problems. The conventional methods for solving inverse problems
face various challenges including strong ill-conditions, high con-
trast, expensive computation cost, and unavoidable intrinsic non-
linearity. To overcome these issues, we propose a new two-step
machine learning based approach. In the first step, a complex-
valued deep convolutional neural network is employed to retrieve
initial contrasts (permittivities) of dielectric scatterers from mea-
sured scattering data. In the second step, the previously obtained
contrasts are input into a complex-valued deep residual convolu-
tional neural network to refine the reconstruction of images. Con-
sequently, the EMIS problem can be solved with much higher ac-
curacy even for high-contrast objects. Numerical examples have
demonstrated the capability of the newly proposed method with the
improved accuracy. The proposed DL approach for EMIS problem
serves a new path for realizing real-time quantitative microwave
imaging for high-contrast objects.

Index Terms—Convolutional neural network, electromagnetic
inverse scattering (EMIS), high-contrast object, residual learning,
two-step process.

I. INTRODUCTION

THE electromagnetic inverse scattering (EMIS) problem
aims to obtain the imaging of scatterers from the knowl-

edge of measured scattered fields information [1]–[3]. As a non-
destructive detecting method, the EMIS only needs the scat-
tered field information outside the object medium. In the past
few decades, the EMIS has been widely applied in civil mea-
surement and medical testing [4], [5]. For an EMIS problem,
reconstruction algorithms like stochastic optimization methods
[6]–[8] have been proposed. Meanwhile, a large number of new
modeling methods, including Born iterative method [9], contrast
source inversion [10], contrast-source extend Born [11], [12],
and subspace optimization method [13] are also raised. However,
all these conventional methods for an EMIS problem have to
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encounter ill-posedness [2], [3]. Besides, the dependence on
the Green’s function to construct electromagnetic (EM) coupled
equations in conventional methods greatly limits their applica-
tion in practical complex scenarios, where the Green’s function
has to be constructed case-by-case. The objects made of high
contrast material also pose a challenge to conventional meth-
ods in terms of the accuracy. Plus, the high complexity and long
computing time keep making inverse scattering problems a chal-
lenge in the real applications, especially for high contrast and
large objects [2], [14].

The rapid development of deep learning (DL) approaches [15]
has been pushing its application to computational electromag-
netic (CEM). There have been numerous successful applica-
tions, including electromagnetic computation [16]–[18], remote
sensing [19], [20], and field-circuit cosimulations [21], [22].
The artificial neural network has been proposed to solve the
EMIS problem [23], [24], where a set of parameters like geo-
metric properties are extracted. However, these methods become
limited for arbitrary and inhomogeneous scatterers. Recently,
other works related to deep neural network (DNN) have been
proposed for solving EMIS problem [28]–[30]. Moreover, the
learning-by-examples paradigm is also proposed to formulate
various machine learning (ML) approaches to solve the EMIS
problem [31]. In [25]–[27], the DL approaches are employed to
improve the solving methods and obtain a better performance.
However, these machine-learning based methods only use a one-
step DL model that is based on the initial inputs only provided by
the conventional methods, such as the backpropagation method
[32].

In this letter, we propose a new two-step DL approach to solve
the EMIS problems. The first step is based on the complex-
valued deep convolutional neural network (DConvNet). It re-
trieves the initial permittivity images of dielectric scatterers
from measured scattering data. In the second step, the complex-
valued deep residual convolutional neural network (DRCNN)
is employed to further extract features from the previously ob-
tained permittivity image to improve the reconstruction. The
advantages and innovative contribution of the proposed method
are: 1) Effectiveness: compared with the conventional methods,
the novel DL method can work for the high-contrast objects;
2) Simplicity: not only the DL framework avoids computing
complex Green’s functions and the high complexity of the con-
ventional methods, but also the two-step process is very conve-
nient to implement; 3) Accuracy: the precision of the newly pro-
posed two-step approach is much better than the one-step based
approaches.

The letter is organized as follows. In Section II, the formula-
tion of EMIS is illustrated while the newly proposed model is
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Fig. 1. Schematic of scattering of TMz wave from a dielectric region Dobj .

described. The next section discusses the process of employ-
ing the proposed DL method to solve EMIS. In Section III,
numerical benchmarks are provided to show the validity and
accuracy of our proposed method. Last, the Section IV gives the
conclusion.

II. PROBLEM AND FORMULATION

A. EMIS Formulation

The representative configuration for EMIS is shown in Fig. 1.
This two-dimensional (2-D) application is used to demonstrate
our methodology. However, our method is also suitable for 3-D
situations. In Fig. 1, Dobj denotes the investigated object do-
main. It is divided into N × N pieces. The 2-D TMz wave is de-
noted asEin. The illuminated scattered fieldEs can be measured
by M receivers around the object. The entire forward process
for EMIS is written by two governing equations, referred to as
Lippmann–Schwinger equations [14], [33]. The first equation,
denoted as the data equation, describes the scattered field as a
reradiation by the field Et of scatterers in the object domain as

Es (r) = k20

∫
Dobj

G (r, r′)χ (r′)Et (r′) dr′ (1)

where G(r, r′) is the Green’s function. For the TMz wave, it is
defined as G(r, r′) = − j

4H
(2)
0 (k0|r − r′|). H(2)

0 stands for the
Hankel function of the zeroth order of the second kind and k0
is the wavenumbers of the free space. r′ = (x′, y′) is the source
point in object domain, while r = (xR, yR) represents the po-
sition vector at the receiver. Et represents the total electronic
field. The contrast function is defined as χ(r′) = εr(r

′)− 1.
The second equation for EMIS, usually called the state equa-

tion [33], describes the field interaction between scatterer pieces
in object domain Dobj as

Et (r) = Ein (r) + k20

∫
Dobj

G (r, r′)χ (r′)Et (r′) dr′ (2)

wherer = (x, y) andr′ = (x′, y′) are, respectively, the field and
source points.

The final goal of EMIS problems is to reconstruct the relative
permittivities εr (or χ) of scatterers from Es in object domain
Dobj . In conventional methods, the object domain Dobj is uni-
formly discretized into pieces where the total electric fields and
the contrast functions are also considered piece-wise constant.
Ultimately, the solving process of EMIS is to transfer (1) and
(2) into the following coupled equations in discretized form [7],
[34]:

Ēs = ¯̄GR · diag (Ēt
) · χ̄ (3)

Fig. 2. DConvNet architecture for the first step.

Ēt = Ēin + ¯̄GD · diag (Ēt
) · χ̄ (4)

where ¯̄GR and ¯̄GD are the discretized Green’s function in (1)
and (2).

In conventional methods, instead of directly solving the cou-
pled equations, an objective function f(χ) is constructed for
optimization in (5). However, obtaining contrast from (5) is a
very difficult nonlinear process [14]

min : f (χ) =

Ni∑
i=1

Es
i − Es

i (χ)
′ + αD (χ) (5)

where the measured scattered field Es
i caused by Ni different

incident fieldEin is approached by the optimized scattered fields
Es

i (χ)
′ by iteration computation of (5). D is the specified sparse

transformation, such as the wavelet transformation [35].

B. Two-Step Deep Learning Approach

To solve the high contrast problem with high accuracy, a
two-step DL approach is proposed to solve the EMIS problem.
In our approach, complex-valued convolutional neural network
models are utilized to convert original scattered fields into the
permitivitties of scatterers in object domain. Regarded as the
straightforward extension of the conventional real-valued CNN,
the complex-valued CNN is naturally closer to the problem for-
mulation for the EMIS problem, and it can allow for richer in-
formation to be captured from the input space [26], [36], [37].
Because the requirement of the huge number of training samples
is difficult to fulfill by real experiment, we use simulation data to
train the DL models. The designed architecture of the proposed
approach for solving EMIS is formulated into the following two
steps.
Step 1: Retrieve the initial contrast by DConvNet

The first step can be regarded as a “heterogeneous” process,
which transfers measured scattered field into a preliminary con-
trast of the object domain. This step is based on the complex-
valued DConvNet, which employs original scattered fields Es

as the input and the ground-truthed contrast χ of scatterer as
the output. Typical ConvNets [38], [39] consists of four types
of layers: input layers, convolutional layers, pooling layers, and
fully connected layers. By stacking these layers together, a typ-
ical ConvNet structure is formed. In this letter, we utilize these
typical layers to form our DConvNet model for the first “hetero-
geneous” step.

The internal architecture of the proposed DConvNet is shown
in Fig. 2. The inputs are the M ×Ni × 2 matrix transferred
from the scattered field use Es, denoted as “field data,” where
M stands for M receivers, Ni represents the number of incident
fields, and the real and imaginary parts of Es act as its two
tubes, as shown in Fig. 3. The corresponding outputs are the
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Fig. 3. DRCNN architecture for the second step.

TABLE I
DCONVNET ARCHITECTURE

N × N × 2 matrix consisting of the real and imaginary parts of
the objective contrast. Thus, the relationship between the input
and output can be expressed by the (6), where Γ stands for the
nonlinear operation of DConvNet in the first step

χ = Γ (Es) . (6)

The convolutional layer and activation layer unit operate to
capture features of input. Convolutional layer number, kernel
number f, its size K, and the stride for kernel are shown in Ta-
ble I. Then, this convolutional layer and activation layer unit feed
into a final fully-connected layer, which predicts the contrast χ.
This final output is used to compute the half-mean-squared error
between the true label and the predicted label, referred to as the
loss.

The DConvNet model for the first step is benchmarked in
MATLAB 2019a with a Deep Learning Toolbox [40]. An adap-
tive moment estimation (Adam) optimizer is chosen to opti-
mize the half-mean-squared-error loss function. The Adam op-
timizer can navigate through the loss surface more successfully

than other optimizer, such as Stochastic Gradient Descent [41].
Moreover, 0.2 dropout regularization is applied to reduce or
prevent over-fitting and to improve prediction accuracy. Unfor-
tunately, due to the limited measured field information, though
the DConvNet in this step can roughly realize the reconstruc-
tion of contrast, its precision cannot still fulfill the requirement of
engineering application [7], [25]–[27], [32]–[34]. Thus, the first
step acts as the initial value choosing process of some conven-
tional methods, such as a Born iterative method, which requires
a roughly approximated initial value for future optimization [9].
Step 2: Refining the initial contrast by DRCNN

The next step can be concluded as a “homogenous” process,
which improves the originally reconstructed contrast to the ac-
curate final result. In this step, the complex-valued DRCNN is
employed to use the retrieved initial contrast obtained in the first
step as the new input to realize the refinement.

The input of the DRCNN is the coarsely reconstructed contrast
χ obtained from the first step, while the corresponding ground-
truthed contrastχ acts as the output. The size of input and output
are both N × N × 2, composing of the real and imaginary parts
of the contrast. The proposed DRCNN is modified based on the
architecture of U-Net [42], which has been widely employed for
segmentation. The U-net CNN architecture is well suited for the
EMIS problem. First, its downsampling operation in contracting
path greatly increases the effective receptive field of the network
and greatly enhance the prediction at each pixel of the output im-
age [43]. Besides, its batch normalization (BN) structure greatly
alleviates the internal covariate shift by the normalization step,
and thus, BN increases its robustness to initializations [44]. Such
as [25]–[28], the paramount parameters of the proposed DR-
CNN are shown in Fig. 3. The proposed DRCNN comprises of
four parts: encoding, bridging, decoding, and skipping, shown
in Fig. 3. The first part encodes the input contrast “image” into
compact representations, while the corresponding decoding part
recovers the representations. The middle bridging part acts as
the bridge connecting the encoding and decoding paths. Plus,
the skip connection for residual learning is added into the last
part, implemented between the input of the neural network and
the output layer in our modified U-net structure. The added skip
connection means that our model actually learns the difference
between input and output. The encoding part is equipped with
repeated application of 3 × 3 convolution, BN, and rectified lin-
ear unit (ReLU) and 2 × 2 max-pooling operation. Meanwhile,
the decoding part is armed with the repeated application of 3 ×
3 up-convolution, BN, ReLU, and concatenation operation with
skip connection, as shown in Fig. 3.

Our model above was built with the following special modi-
fications.

1) Skip connection: unlike the conventional U-Net [42], the
skip connection is added into our DRCNN. The skip connection
enables the entire network to learn the difference between the
rough contrast “image” from the first step and the ground-truthed
contrast “image,” i.e., adding the residual learning function to
the proposed model. Besides, the added skip connection can ef-
fectively avoid the vanishing gradient problem in the training
process [45]. Different from the same network without the skip
connection, its implementation can bring a noticeable improve-
ment in performance [27], [28].

2) Complex-valued input and output: considering the EMIS
problem is a typical complex-valued problem, we modify the
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input and output channel number of the original U-Net [42].
As a result, their real part and imaginary parts can be adapted in
different channel. Thus, our proposed model is more flexible and
adaptable for the contrast reconstruction for the real application
scenario.

Hence, the second step acts as the iterative refining process
of most conventional iterative optimization methods [6]–[13],
which refine the contrast by optimization. We also emphasize
that the entire model construction process never depends on the
Green’s function computation. Plus, our method can help to re-
duce ill conditioned systems that conventional methods usually
deal with [46]. The relationship of the entire process can be
expressed as (7), where F represents the nonlinear operation
of the DRCNN. In the second step, the Adam optimizer is still
chosen to optimize the half-mean-squared-error loss function,
while 0.2 dropout regularization is used to reduce overfitting in
the proposed DRCNN

χ = F (Γ (Es)) . (7)

In conclusion, the first step acts as the initial value choos-
ing process of some conventional methods, while the second
step acts as the iterative refining process of most conventional
iterative methods. The proposed two steps perfectly replace the
process of conventional methods for solving the EMIS problem.

III. NUMERICAL RESULTS

In this section, the MNIST dataset is chosen to verify the ef-
fectiveness and accuracy of the proposed two-step DL approach.
Individual samples in MNIST dataset with the size of 2λ × 2λ

(λ = 1 m in free space) are discretized into 28 × 28 even pieces
(N = 28). Besides, six different incident plane waves with in-
cident angle evenly distributed within [0°, 360°) are exerted to
object domain Dobj , separately (Ni = 6). M = 20 receivers
are evenly located around the object domain Dobj with the dis-
tance 30λ. The full-wave EM simulations [47] are used on all
samples to generate training and testing data. Based on MNIST
[25]–[27], the number-shaped objects are set to the extremely
high contrast with the relative permittivity εr = 8, which is con-
sidered as a very challenging case. To ensure the generalization,
we randomly choose 8000 samples in MNIST dataset for train-
ing DL models of the proposed two-step approach. According
to our trail, the performance of the trained models based on
the same number of randomly chooses samples keeps stable.
Another 1000 samples are chosen for testing. To evaluate the
quality of reconstructed “images,” we normalize the results and
employ mean-square error (MSE) of the normalized result as
the quantitative indicator, as done in [23]–[27]. Moreover, as
the comparison, the Born iterative method is also employed to
reconstruct the contrast of testing samples. The results have been
shown in Fig. 4.

From Fig. 4, we can see the ground truths of testing samples,
reconstructed images from the Born iterative method [9], the re-
constructed results from the first and second step of our proposed
DL approach. Clearly the final outputs of the proposed method
are much better reconstruction of the ground truth. However,
the first step can only provide coarsely reconstructed objects.
For this high-contrast case, the Born iterative method cannot
produce any meaningful result.

Fig. 4. Comparison of reconstructed relative permittivity of number-shaped
objects. (a) Ground truths. (b) Reconstructed relative permittivity from the Born
iterative method. (c) Reconstructed rough relative permittivity from the first step
of the proposed approach. (d) Reconstructed final relative permittivity from the
second step of the proposed approach.

Fig. 5. MSE statistical histograms of the normalized reconstructed contrast
“image” quality. (a) Results obtained from the first step of the proposed approach.
(b) Results obtained from the second step of the proposed approach.

Fig. 5 shows the statistical analysis of the testing results,
where the MSE average of normalized reconstructed results by
the proposed method are about 0.04, while that average obtained
from the first step can even overcome 0.1. Hence, the proposed
two-step DL approach can solve the EMIS problem with a much
better performance.

IV. CONCLUSION

This letter proposes a new two-step DL approach to solve
EMIS problems. These two steps implement the “heteroge-
neous” and “homogeneous” reconstruction process, respec-
tively. The contrast of scatterers can be reconstructed with the en-
hanced refinement. In the first step, a complex-valued DConvNet
is employed to extract the initial contrast from measured field
data. In the second step, the retrieved initial is further enhanced
by a complex-valued deep residual network (DRCNN) to realize
the reconstruction improvement. Consequently, the EMIS prob-
lems can be solved with much higher accuracy even for high-
contrast objects. Numerical examples demonstrate the capability
and feasibility of the proposed method with the clear accuracy
improvement. The proposed DL approach for the EMIS prob-
lem provides a new thinking in realizing real-time quantitative
microwave imaging.
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